Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Utah State University

Series

2019

Streptomyces

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Improved Production Of Antifungal Angucycline Sch47554 By Manipulating Three Regulatory Genes In Streptomyces Sp. Scc-2136, Ozkan Fidan, Riming Yan, Du Zhu, Jixun Zhan Apr 2019

Improved Production Of Antifungal Angucycline Sch47554 By Manipulating Three Regulatory Genes In Streptomyces Sp. Scc-2136, Ozkan Fidan, Riming Yan, Du Zhu, Jixun Zhan

Biological Engineering Faculty Publications

Sch47554 and Sch47555 are two angucyclines with antifungal activities against various yeasts and dermatophytes from Streptomyces sp. SCC‐2136. The schgene cluster contains several putative regulatory genes. Both schA4 and schA21were predicted as the TetR family transcriptional regulators, whereas schA16shared significant similarity to the AraC family transcriptional regulators. Although Sch47554 is the major product of Streptomyces sp. SCC‐2136, its titer is only 6.72 mg/L. This work aimed to increase the production of this promising antifungal compound by investigating and manipulating the regulatory genes in the Sch47554 biosynthetic pathway. Disruption of schA4and schA16 led to a significant increase …


Identification Of New Glutamate Decarboxylases From Streptomyces For Efficient Production Of Γ-Aminobutyric Acid In Engineered Escherichia Coli, Haina Yuan, Hongbo Wang, Ozkan Fidan, Yong Qin, Gongnian Xiao, Jixun Zhan Mar 2019

Identification Of New Glutamate Decarboxylases From Streptomyces For Efficient Production Of Γ-Aminobutyric Acid In Engineered Escherichia Coli, Haina Yuan, Hongbo Wang, Ozkan Fidan, Yong Qin, Gongnian Xiao, Jixun Zhan

Biological Engineering Faculty Publications

Background

Gamma (γ)-Aminobutyric acid (GABA) as a bioactive compound is used extensively in functional foods, pharmaceuticals and agro-industry. It can be biosynthesized via decarboxylation of monosodium glutamate (MSG) or L-glutamic acid (L-Glu) by glutamate decarboxylase (GAD; EC4.1.1.15). GADs have been identified from a variety of microbial sources, such as Escherichia coli and lactic acid bacteria. However, no GADs from Streptomyces have been characterized. The present study is aimed to identify new GADs from Streptomyces strains and establish an efficient bioproduction platform for GABA in E. coli using these enzymes.

Results

By sequencing and analyzing the genomes of three Streptomycesstrains, …