Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Aging Effect Evolution During Ferroelectric-Ferroelectric Phase Transition: A Mechanism Study, Zuyong Feng, Zhenxiang Cheng, Dongqi Shi, S X. Dou Jan 2013

Aging Effect Evolution During Ferroelectric-Ferroelectric Phase Transition: A Mechanism Study, Zuyong Feng, Zhenxiang Cheng, Dongqi Shi, S X. Dou

Australian Institute for Innovative Materials - Papers

Aging can significantly modify the dielectric, piezoelectric, and ferroelectric performance of ferroelectrics. However, little attention has been paid to the aging effect during ferroelectric-ferroelectric phase transitions that is essentially correlated with real applications. In this letter, the authors report the aging effect evolution between two ferroelectric phases in an acceptor-doped piezoceramics. The results show that aging-induced double hysteresis loops were exhibited in different ferroelectric phases, but disappeared during ferroelectric-ferroelectric phase transitions, suggesting the mechanism that the intrinsic restoring force for the reversible switching of domains caused by the alignment of defect dipoles was weakened due to ferroelectric dipole reorientation.


Effect Of Aging And Deformation On The Microstructure And Properties Of Fe-Ni-Ti Maraging Steel, A Shekhter, H I. Aaronson, M K. Miller, S P. Ringer, E V. Pereloma Jan 2004

Effect Of Aging And Deformation On The Microstructure And Properties Of Fe-Ni-Ti Maraging Steel, A Shekhter, H I. Aaronson, M K. Miller, S P. Ringer, E V. Pereloma

Faculty of Engineering and Information Sciences - Papers: Part A

The age-hardening behavior of Fe−25.3Ni−1.7 Ti (wt pct) alloy both in undeformed specimens and in specimens cold deformed by 10 or 20 pct prior to aging was studied. The microstructural changes during aging were observed using transmission electron microscopy (TEM) and atom probe analysis and there were related to the mechanical properties as measured by microhardness and shear punch testing. An excellent combination of hardness, strength, and ductility was achieved after only 5 seconds aging at 550°C. We propose that this rapid strengthening is due to a dislocation friction effect arising from the formation of a fine dispersion of Ni−Ti …