Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

University of Massachusetts Amherst

Theses/Dissertations

2014

Catalysis

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Production Of Sustainable Aromatics From Biorenewable Furans, Christopher Luke Williams Nov 2014

Production Of Sustainable Aromatics From Biorenewable Furans, Christopher Luke Williams

Doctoral Dissertations

Increasing demand for renewable and domestic energy and materials has led to an accelerated research effort in developing biomass-derived fuels and chemicals. The North American shale gas revolution can provide a domestic source for the manufacture of four of the five major products of the world chemical industry: methanol, ethylene, ammonia, and propylene. However this emerging domestic resource lacks a conversion pathway to the fifth major chemical building block; the larger C6 aromatics benzene, toluene, and xylene (BTX). One sustainable feedstock for renewable C6 aromatic chemicals is sugars produced by the saccharification of biopolymers (e.g., cellulose, hemicellulose). The catalytic conversion …


Structural, Electronic And Catalytic Properties Of Graphene-Supported Platinum Nanoclusters, Ioanna Fampiou Nov 2014

Structural, Electronic And Catalytic Properties Of Graphene-Supported Platinum Nanoclusters, Ioanna Fampiou

Doctoral Dissertations

Carbon materials are predominantly used as catalytic supports due to their high surface area, excellent electrical conductivity, resistance to corrosion and structural stability. Graphene, a 2D monolayer of graphite, with its excellent thermal, electronic and mechanical features, has been considered a promising support material for next generation metal-graphene nanocatalysts. The main focus of this dissertation is to investigate the properties of such metal-graphene nanocomposites using computational methods, and to develop a comprehensive understanding of the experimentally observed enhanced catalytic activity of graphene-supported Platinum (Pt) clusters. In particular, we seek to understand the role of graphene supports on the ground-state morphology …