Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Seer: An Explainable Deep Learning Midi-Based Hybrid Song Recommender System, Khalil Damak, Olfa Nasraoui Dec 2019

Seer: An Explainable Deep Learning Midi-Based Hybrid Song Recommender System, Khalil Damak, Olfa Nasraoui

Faculty Scholarship

State of the art music recommender systems mainly rely on either matrix factorization-based collaborative filtering approaches or deep learning architectures. Deep learning models usually use metadata for content-based filtering or predict the next user interaction by learning from temporal sequences of user actions. Despite advances in deep learning for song recommendation, none has taken advantage of the sequential nature of songs by learning sequence models that are based on content. Aside from the importance of prediction accuracy, other significant aspects are important, such as explainability and solving the cold start problem. In this work, we propose a hybrid deep learning …


Receptive Fields Optimization In Deep Learning For Enhanced Interpretability, Diversity, And Resource Efficiency., Babajide Odunitan Ayinde May 2019

Receptive Fields Optimization In Deep Learning For Enhanced Interpretability, Diversity, And Resource Efficiency., Babajide Odunitan Ayinde

Electronic Theses and Dissertations

In both supervised and unsupervised learning settings, deep neural networks (DNNs) are known to perform hierarchical and discriminative representation of data. They are capable of automatically extracting excellent hierarchy of features from raw data without the need for manual feature engineering. Over the past few years, the general trend has been that DNNs have grown deeper and larger, amounting to huge number of final parameters and highly nonlinear cascade of features, thus improving the flexibility and accuracy of resulting models. In order to account for the scale, diversity and the difficulty of data DNNs learn from, the architectural complexity and …


A Deep Learning Approach To Detect Diabetic Retinopathy In Fundus Images., Winston R. Furtado Apr 2019

A Deep Learning Approach To Detect Diabetic Retinopathy In Fundus Images., Winston R. Furtado

Electronic Theses and Dissertations

Background: Diabetic retinopathy is a disease caused due by complications of diabetes mellitus which can lead to blindness. About 33% of the US population with diabetes also show symptoms for diabetes retinopathy. If not treated, diabetic retinopathy worsens over time by progressing through two main pathological stages of non-proliferative and proliferative and four clinical stages. While the diagnostic accuracy of detecting diabetic retinopathy through machine learning have shown to be successful for OCT images, the accuracy of ultra-widefield fundus images have yet to be fully reported. This paper describes a method to non-invasively detect and diagnose diabetic retinopathy from ultra-widefield …


An Explainable Autoencoder For Collaborative Filtering Recommendation, Pegah Sagheb Haghighi, Olurotimi Seton, Olfa Nasraoui Jan 2019

An Explainable Autoencoder For Collaborative Filtering Recommendation, Pegah Sagheb Haghighi, Olurotimi Seton, Olfa Nasraoui

Faculty Scholarship

Autoencoders are a common building block of Deep Learning architectures, where they are mainly used for representation learning. They have also been successfully used in Collaborative Filtering (CF) recommender systems to predict missing ratings. Unfortunately, like all black box machine learning models, they are unable to explain their outputs. Hence, while predictions from an Autoencoderbased recommender system might be accurate, it might not be clear to the user why a recommendation was generated. In this work, we design an explainable recommendation system using an Autoencoder model whose predictions can be explained using the neighborhood based explanation style. Our preliminary work …