Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Copper Oxide Nanoparticle Diameter Mediates Serum-Sensitive Toxicity In Beas-2b Cells, Angie S. Morris, Brittany E. Givens, Aaron Silva, Aliasger K. Salem Feb 2021

Copper Oxide Nanoparticle Diameter Mediates Serum-Sensitive Toxicity In Beas-2b Cells, Angie S. Morris, Brittany E. Givens, Aaron Silva, Aliasger K. Salem

Chemical and Materials Engineering Faculty Publications

Copper oxide (CuO) nanoparticles (NPs) are abundant in manufacturing processes, but they are an airway irritant. In vitro pulmonary toxicity of CuO NPs has been modeled using cell lines such as human bronchial epithelial cell line BEAS-2B. In 2D in vitro culture, BEAS-2B undergoes squamous differentiation due to the presence of serum. Differentiation is part of the repair process of lung cells in vivo that helps to preserve the epithelial lining of the respiratory tract. Herein, the effects of serum on the hydrodynamic diameter, cellular viability, cellular differentiation, and cellular uptake of 5 and 35 nm CuO NPs are investigated, …


The Characterization Of Purified Citrate-Coated Cerium Oxide Nanoparticles Prepared Via Hydrothermal Synthesis, Matthew L. Hancock, Robert A. Yokel, Matthew J. Beck, Julie L. Calahan, Travis W. Jarrells, Eric J. Munson, George A. Olaniyan, Eric A. Grulke Jan 2021

The Characterization Of Purified Citrate-Coated Cerium Oxide Nanoparticles Prepared Via Hydrothermal Synthesis, Matthew L. Hancock, Robert A. Yokel, Matthew J. Beck, Julie L. Calahan, Travis W. Jarrells, Eric J. Munson, George A. Olaniyan, Eric A. Grulke

Chemical and Materials Engineering Faculty Publications

Hypothesis

Cerium oxide nanoparticles were synthesized using a hydrothermal approach with citric acid as a stabilizing agent. Citric acid adsorption onto the nanoceria particle surface can cease particle formation and create a stable dispersion for an extended shelf life. The product was dialyzed immediately following the synthesis to remove unreacted cerium that could contribute to biological effects. Nanoparticle characterization results are expected to help identify the surface citrate bonding structure.

Experiments

Many characterization techniques were utilized to determine size, morphology, surface properties, and citrate complexation on the nanoceria particle surface. These included transmission electron microscopy, electron energy loss spectroscopy, dynamic …


Surface-Controlled Dissolution Rates: A Case Study Of Nanoceria In Carboxylic Acid Solutions, Eric A. Grulke, Matthew J. Beck, Robert A. Yokel, Jason M. Unrine, Uschi M. Graham, Matthew L. Hancock Apr 2019

Surface-Controlled Dissolution Rates: A Case Study Of Nanoceria In Carboxylic Acid Solutions, Eric A. Grulke, Matthew J. Beck, Robert A. Yokel, Jason M. Unrine, Uschi M. Graham, Matthew L. Hancock

Chemical and Materials Engineering Faculty Publications

Nanoparticle dissolution in local milieu can affect their ecotoxicity and therapeutic applications. For example, carboxylic acid release from plant roots can solubilize nanoceria in the rhizosphere, affecting cerium uptake in plants. Nanoparticle dispersions were dialyzed against ten carboxylic acid solutions for up to 30 weeks; the membrane passed cerium-ligand complexes but not nanoceria. Dispersion and solution samples were analyzed for cerium by inductively coupled plasma mass spectrometry (ICP-MS). Particle size and shape distributions were measured by transmission electron microscopy (TEM). Nanoceria dissolved in all carboxylic acid solutions, leading to cascades of progressively smaller nanoparticles and producing soluble products. The dissolution …


The Role Of Catalytic Residue PKA On The Hydrolysis/Transglycosylation Partition In Family 3 Β-Glucosidases, Inacrist Geronimo, Christina M. Payne, Mats Sandgren Dec 2017

The Role Of Catalytic Residue PKA On The Hydrolysis/Transglycosylation Partition In Family 3 Β-Glucosidases, Inacrist Geronimo, Christina M. Payne, Mats Sandgren

Chemical and Materials Engineering Faculty Publications

β-Glucosidases (βgls) primarily catalyze the hydrolysis of the terminal glycosidic bond at the non-reducing end of β-glucosides, although glycosidic bond synthesis (called transglycosylation) can also occur in the presence of another acceptor. In the final reaction step, the glucose product or another substrate competes with water for transfer to the glycosyl-enzyme intermediate. The factors governing the balance between the two pathways are not fully known; however, the involvement of ionizable residues in binding and catalysis suggests that their pKa may play a role. Through constant pH molecular dynamics simulations of a glycoside hydrolase Family 3 (GH3) βgl, we …


Improving The Thermal Stability Of Cellobiohydrolase Cel7a From Hypocrea Jecorina By Directed Evolution, Frits Goedegebuur, Lydia Dankmeyer, Peter Gualfetti, Saeid Karkehabadi, Henrik Hansson, Suvamay Jana, Vicky Huynh, Bradley R. Kelemen, Paulien Kruithof, Edmund A. Larenas, Pauline J. M. Teunissen, Jerry Ståhlberg, Christina M. Payne, Colin Mitchinson, Mats Sandgren Aug 2017

Improving The Thermal Stability Of Cellobiohydrolase Cel7a From Hypocrea Jecorina By Directed Evolution, Frits Goedegebuur, Lydia Dankmeyer, Peter Gualfetti, Saeid Karkehabadi, Henrik Hansson, Suvamay Jana, Vicky Huynh, Bradley R. Kelemen, Paulien Kruithof, Edmund A. Larenas, Pauline J. M. Teunissen, Jerry Ståhlberg, Christina M. Payne, Colin Mitchinson, Mats Sandgren

Chemical and Materials Engineering Faculty Publications

Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and …


Inhibition Of Mammalian Glycoprotein Ykl-40 Identification Of The Physiological Ligand, Abhishek A. Kognole, Christina M. Payne Jan 2017

Inhibition Of Mammalian Glycoprotein Ykl-40 Identification Of The Physiological Ligand, Abhishek A. Kognole, Christina M. Payne

Chemical and Materials Engineering Faculty Publications

YKL-40 is a mammalian glycoprotein associated with progression, severity, and prognosis of chronic inflammatory diseases and a multitude of cancers. Despite this well documented association, identification of the lectin′s physiological ligand and, accordingly, biological function has proven experimentally difficult. YKL-40 has been shown to bind chito-oligosaccharides; however, the production of chitin by the human body has not yet been documented. Possible alternative ligands include proteoglycans, polysaccharides, and fibers like collagen, all of which makeup the extracellular matrix. It is likely that YKL-40 is interacting with these alternative polysaccharides or proteins within the body, extending its function to cell biological roles …


Graphene Oxide Quantum Dots Covalently Functionalized Pvdf Membrane With Significantly-Enhanced Bactericidal And Antibiofouling Performances, Zhiping Zeng, Dingshan Yu, Ziming He, Jing Liu, Fang-Xing Xiao, Yan Zhang, Rong Wang, Dibakar Bhattacharyya, Timothy Thatt Yang Tan Feb 2016

Graphene Oxide Quantum Dots Covalently Functionalized Pvdf Membrane With Significantly-Enhanced Bactericidal And Antibiofouling Performances, Zhiping Zeng, Dingshan Yu, Ziming He, Jing Liu, Fang-Xing Xiao, Yan Zhang, Rong Wang, Dibakar Bhattacharyya, Timothy Thatt Yang Tan

Chemical and Materials Engineering Faculty Publications

Covalent bonding of graphene oxide quantum dots (GOQDs) onto amino modified polyvinylidene fluoride (PVDF) membrane has generated a new type of nano-carbon functionalized membrane with significantly enhanced antibacterial and antibiofouling properties. A continuous filtration test using E. coli containing feedwater shows that the relative flux drop over GOQDs modified PVDF is 23%, which is significantly lower than those over pristine PVDF (86%) and GO-sheet modified PVDF (62%) after 10 h of filtration. The presence of GOQD coating layer effectively inactivates E. coli and S. aureus cells, and prevents the biofilm formation on the membrane surface, producing excellent antimicrobial activity and …