Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Surface Properties And Interaction Forces Of Biopolymer-Doped Conductive Polypyrrole Surfaces By Atomic Force Microscopy, Jani M. Pelto, Suvi P. Haimi, Aliisa S. Siljander, Susanna S. Miettinen, Kirsi M. Tappura, Michael J. Higgins, Gordon G. Wallace Mar 2014

Surface Properties And Interaction Forces Of Biopolymer-Doped Conductive Polypyrrole Surfaces By Atomic Force Microscopy, Jani M. Pelto, Suvi P. Haimi, Aliisa S. Siljander, Susanna S. Miettinen, Kirsi M. Tappura, Michael J. Higgins, Gordon G. Wallace

Gordon Wallace

Surface properties and electrical charges are critical factors elucidating cell interactions on biomaterial surfaces. The surface potential distribution and the nanoscopic and microscopic surface elasticity of organic polypyrrole-hyaluronic acid (PPy-HA) were studied by atomic force microscopy (AFM) in a fluid environment in order to explain the observed enhancement in the attachment of human adipose stem cells on positively charged PPy-HA films. The electrostatic force between the AFM tip and a charged PPy-HA surface, the tip-sample adhesion force, and elastic moduli were estimated from the AFM force curves, and the data were fitted to electrostatic double-layer and elastic contact models. The …


Cation Exchange At Semiconducting Oxide Surfaces: Origin Of Light-Induced Performance Increases In Porphyrin Dye-Sensitized Solar Cells, Matthew J. Griffith, Kenji Sunahara, Akihiro Furube, Attila J. Mozer, David L. Officer, Pawel Wagner, Gordon G. Wallace, Shogo Mori Mar 2014

Cation Exchange At Semiconducting Oxide Surfaces: Origin Of Light-Induced Performance Increases In Porphyrin Dye-Sensitized Solar Cells, Matthew J. Griffith, Kenji Sunahara, Akihiro Furube, Attila J. Mozer, David L. Officer, Pawel Wagner, Gordon G. Wallace, Shogo Mori

Gordon Wallace

The origin of simultaneous improvements in the short-circuit current density (Jsc) and open-circuit voltage (Voc) of porphyrin dye-sensitized TiO2 solar cells following white light illumination was studied by systematic variation of several different device parameters. Reduction of the dye surface loading resulted in greater relative performance enhancements, suggesting open space at the TiO2 surface expedites the process. Variation of the electrolyte composition and subsequent analysis of the conduction band potential shifts suggested that a light-induced replacement of surface-adsorbed lithium (Li+) ions with dimethylpropylimidazolium (DMPIm+) ions was responsible for an increased electron lifetime by decreasing the recombination with the redox mediator. …


Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson Feb 2014

Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson

Thomas E. Wilson

We provide a convenient recipe for fabricating reliable superconducting microbolometers as acoustic phonon detectors with sub-nanosecond response, using imagereversal optical lithography and dc-magnetron sputtering, and our recipe requires no chemical or plasma etching. Our approach solves the traditional problem for granular aluminium bolometers of unreliable (i.e., non-Ohmic) electrical contacts by sequentially sputtering the granular aluminium film and then a palladium capping layer. We use dc calibration data, the method of Danilchenko et al. [1], and direct nanosecond-pulsed photoexcitation to obtain the microbolometer’s characteristic current, thermal conductance, characteristic relaxation time, and heat capacity. We also demonstrate the use of the deconvolution …


Failure Analysis Of Retrieved Uhmwpe Tibial Insert In Total Knee Replacement Dec 2010

Failure Analysis Of Retrieved Uhmwpe Tibial Insert In Total Knee Replacement

A.S. Md Abdul Haseeb

This study involves the failure analysis of an ultra high molecular polyethylene (UHMWPE) tibial insert from Apollo® Total Knee System, which was removed after 10. years of service from 70. years old female patient. The tibial insert was investigated by using a stereoscope, scanning electron microscope (SEM), infinite focus microscope (IFM) and energy disperse spectroscopy (EDS) to characterize the morphology and composition of the bearing surface. Differential scanning calorimetry (DSC) and Fourier transform spectroscopy (FTIR) were employed to characterize the degradation and crystallinity of the component. Gel-permeation chromatography (GPC) was used to measure the polyethylene tibial insert molecular weight. Results …