Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh Jul 2015

Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh

Mikhail Vasiliev

Magneto-optic (MO) garnets are used in a range of applications in nanophotonics, integrated optics, communications and imaging. Bi-substituted iron garnets of different compositions are the most useful class of materials in applied magnetooptics due to their excellent MO properties (large Faraday effect) and record-high MO figure of merit among all semitransparent dielectrics. It is highly desirable to synthesise garnets which possess simultaneously a high MO figure of merit and large uniaxial magnetic anisotropy. However, the simultaneous optimization of several material properties and parameters can be difficult in single-layer garnet thin films, and it is also challenging to prepare films with …


Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur E Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh Apr 2015

Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur E Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh

Mikhail Vasiliev

Magneto-optic (MO) garnets are used in a range of applications in nanophotonics, integrated optics, communications and imaging. Bi-substituted iron garnets of different compositions are the most useful class of materials in applied magneto- optics due to their excellent MO properties (large Faraday effect) and record-high MO figure of merit among all semi- transparent dielectrics. It is highly desirable to synthesise garnets which possess simultaneously a high MO figure of merit and large uniaxial magnetic anisotropy. However, the simultaneous optimization of several material properties and parameters can be difficult in single-layer garnet thin films, and it is also challenging to prepare …


Groove Shape-Dependent Absorption Enhancement Of 850 Nm Msm Photodetectors With Nano-Gratings., Narottam Das, Ayman Karar, Mikhail Vasiliev, Chee Leong Tan, Kamal Alameh, Yong Tak Lee Apr 2015

Groove Shape-Dependent Absorption Enhancement Of 850 Nm Msm Photodetectors With Nano-Gratings., Narottam Das, Ayman Karar, Mikhail Vasiliev, Chee Leong Tan, Kamal Alameh, Yong Tak Lee

Mikhail Vasiliev

Finite difference time-domain (FDTD) analysis is used to investigate the light absorption enhancement factor dependence on the groove shape of the nano-gratings etched into the surfaces of metal-semiconductor-metal photodetector (MSM-PD) structures. By patterning the MSM-PDs with optimized nano-gratings a significant improvement in light absorption near the design wavelength is achieved through plasmon-assisted electric field concentration effects. Simulation results show about 50 times light absorption enhancement for 850 nm light due to improved optical signal propagation through the nano-gratings.


Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur E Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh Apr 2015

Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur E Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh

Mikhail Vasiliev

Magneto-optic (MO) garnets are used in a range of applications in nanophotonics, integrated optics, communications and imaging. Bi-substituted iron garnets of different compositions are the most useful class of materials in applied magneto- optics due to their excellent MO properties (large Faraday effect) and record-high MO figure of merit among all semi- transparent dielectrics. It is highly desirable to synthesise garnets which possess simultaneously a high MO figure of merit and large uniaxial magnetic anisotropy. However, the simultaneous optimization of several material properties and parameters can be difficult in single-layer garnet thin films, and it is also challenging to prepare …


Groove Shape-Dependent Absorption Enhancement Of 850 Nm Msm Photodetectors With Nano-Gratings., Narottam Das, Ayman Karar, Mikhail Vasiliev, Chee Leong Tan, Kamal Alameh, Yong Tak Lee Apr 2015

Groove Shape-Dependent Absorption Enhancement Of 850 Nm Msm Photodetectors With Nano-Gratings., Narottam Das, Ayman Karar, Mikhail Vasiliev, Chee Leong Tan, Kamal Alameh, Yong Tak Lee

Mikhail Vasiliev

Finite difference time-domain (FDTD) analysis is used to investigate the light absorption enhancement factor dependence on the groove shape of the nano-gratings etched into the surfaces of metal-semiconductor-metal photodetector (MSM-PD) structures. By patterning the MSM-PDs with optimized nano-gratings a significant improvement in light absorption near the design wavelength is achieved through plasmon-assisted electric field concentration effects. Simulation results show about 50 times light absorption enhancement for 850 nm light due to improved optical signal propagation through the nano-gratings.


Metal-Semiconductor-Metal (Msm) Photodetectors With Plasmonic Nanogratings, Narottam K. Das, Ayman Karar, C L Tan, Mikhail Vasiliev, Kamal Alameh, Yong Tak Lee Apr 2015

Metal-Semiconductor-Metal (Msm) Photodetectors With Plasmonic Nanogratings, Narottam K. Das, Ayman Karar, C L Tan, Mikhail Vasiliev, Kamal Alameh, Yong Tak Lee

Mikhail Vasiliev

We discuss the light absorption enhancement factor dependence on the design of nanogratings inscribed into metal-semiconductor-metal photodetector (MSM-PD) structures. These devices are optimized geometrically, leading to light absorption improvement through plasmon-assisted effects. Finite-difference time-domain (FDTD) simulation results show ~50 times light absorption enhancement for 850 nm light due to improved optical signal propagation through the nanogratings. Also, we show that the light absorption enhancement is strongly dependent on the nanograting shapes in MSM-PDs.


Garnet Multilayer Thin Film Structure With Magnetostatically-Altered And Improved Magnetic Properties Prepared By Rf Magnetron Sputtering, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh Apr 2015

Garnet Multilayer Thin Film Structure With Magnetostatically-Altered And Improved Magnetic Properties Prepared By Rf Magnetron Sputtering, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh

Mikhail Vasiliev

We prepare an all-garnet multilayer film structure by sandwiching a magneto-soft garnet material in between two magneto-hard garnet materials with high bismuth substitution levels using RF magnetron sputtering technique and investigate the microstructure and the effects of magnetostatic inter-layer coupling on magnetic properties. Both types of the Bi-substituted magneto-optic garnet materials used possess excellent optical, magnetic and magneto-optical properties suitable for the application in different new and emerging technologies in optics and photonics. Garnet layers of composition type Bi2Dy1Fe4Ga1O12 have strong perpendicular magnetic anisotropy and Bi1.8Lu1.2Fe3.6Al1.4O12 magneto-soft layer features magnetization behavior similar to that of in-plane magnetized films. The all-garnet …