Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Selected Works

Mikhail Vasiliev

Iron garnet

Articles 1 - 4 of 4

Full-Text Articles in Engineering

New Class Of Garnet Nanocomposites For Use In Magnetic Photonic Crystals Prepared By Rf Magnetron Co-Sputtering, Mohammad Nur E Alam, Mikhail Vasiliev, Kamal Alameh Apr 2015

New Class Of Garnet Nanocomposites For Use In Magnetic Photonic Crystals Prepared By Rf Magnetron Co-Sputtering, Mohammad Nur E Alam, Mikhail Vasiliev, Kamal Alameh

Mikhail Vasiliev

A new class of magneto-optic garnet nanocomposite materials is prepared using two Bi-substituted iron garnet materials of composition types (Bi,Dy) 3(Fe,Ga)5O12 and Bi3Fe 5O12. A composition adjustment approach is applied by varying the radio frequency (RF) powers driving each sputtering target during the deposition process. This new class of nanocomposite materials exhibits simultaneously high specific Faraday rotation, MO figure of merit, and effective uniaxial magnetic anisotropy after being crystallized through optimized annealing processes. We demonstrate experimentally that the excellent combination of materials' properties obtained in this garnet nanocomposite is particularly advantageous for developing magneto-photonic crystals as well as optical sensors …


Growth, Characterisation, And Properties Of Bi1.8lu1.2fe3.6al1.4o12 Garnet Films Prepared Using Two Different Substrate Temperatures, Mohammad Alam, Mikhail Vasiliev, Kamal Alameh Apr 2015

Growth, Characterisation, And Properties Of Bi1.8lu1.2fe3.6al1.4o12 Garnet Films Prepared Using Two Different Substrate Temperatures, Mohammad Alam, Mikhail Vasiliev, Kamal Alameh

Mikhail Vasiliev

We prepare highly Bismuth substituted iron garnet of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 by using low and high substrate temperatures (250°C and 680°C) during the deposition process inside the vacuum chamber of RF magnetron sputtering system. The crystallisation process of this garnet type thin film materials are performed by means of optimised high temperature oven annealing process and conduct several characterisation techniques to obtain and evaluate their properties. All the optimally annealed samples possess very promising and attractive properties. Comparatively low coercive force (below 15 Oe) is achieved in garnet films prepared at high substrate temperature of 680°C, simultaneously with high MO …


New Class Of Garnet Nanocomposites For Use In Magnetic Photonic Crystals Prepared By Rf Magnetron Co-Sputtering, Mohammad Nur E Alam, Mikhail Vasiliev, Kamal Alameh Apr 2015

New Class Of Garnet Nanocomposites For Use In Magnetic Photonic Crystals Prepared By Rf Magnetron Co-Sputtering, Mohammad Nur E Alam, Mikhail Vasiliev, Kamal Alameh

Mikhail Vasiliev

A new class of magneto-optic garnet nanocomposite materials is prepared using two Bi-substituted iron garnet materials of composition types (Bi,Dy) 3(Fe,Ga)5O12 and Bi3Fe 5O12. A composition adjustment approach is applied by varying the radio frequency (RF) powers driving each sputtering target during the deposition process. This new class of nanocomposite materials exhibits simultaneously high specific Faraday rotation, MO figure of merit, and effective uniaxial magnetic anisotropy after being crystallized through optimized annealing processes. We demonstrate experimentally that the excellent combination of materials' properties obtained in this garnet nanocomposite is particularly advantageous for developing magneto-photonic crystals as well as optical sensors …


Growth, Characterisation, And Properties Of Bi1.8lu1.2fe3.6al1.4o12 Garnet Films Prepared Using Two Different Substrate Temperatures, Mohammad Alam, Mikhail Vasiliev, Kamal Alameh Apr 2015

Growth, Characterisation, And Properties Of Bi1.8lu1.2fe3.6al1.4o12 Garnet Films Prepared Using Two Different Substrate Temperatures, Mohammad Alam, Mikhail Vasiliev, Kamal Alameh

Mikhail Vasiliev

We prepare highly Bismuth substituted iron garnet of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 by using low and high substrate temperatures (250°C and 680°C) during the deposition process inside the vacuum chamber of RF magnetron sputtering system. The crystallisation process of this garnet type thin film materials are performed by means of optimised high temperature oven annealing process and conduct several characterisation techniques to obtain and evaluate their properties. All the optimally annealed samples possess very promising and attractive properties. Comparatively low coercive force (below 15 Oe) is achieved in garnet films prepared at high substrate temperature of 680°C, simultaneously with high MO …