Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Selected Works

Mikhail Vasiliev

Deposition process

Articles 1 - 2 of 2

Full-Text Articles in Engineering

New Class Of Garnet Nanocomposites For Use In Magnetic Photonic Crystals Prepared By Rf Magnetron Co-Sputtering, Mohammad Nur E Alam, Mikhail Vasiliev, Kamal Alameh Apr 2015

New Class Of Garnet Nanocomposites For Use In Magnetic Photonic Crystals Prepared By Rf Magnetron Co-Sputtering, Mohammad Nur E Alam, Mikhail Vasiliev, Kamal Alameh

Mikhail Vasiliev

A new class of magneto-optic garnet nanocomposite materials is prepared using two Bi-substituted iron garnet materials of composition types (Bi,Dy) 3(Fe,Ga)5O12 and Bi3Fe 5O12. A composition adjustment approach is applied by varying the radio frequency (RF) powers driving each sputtering target during the deposition process. This new class of nanocomposite materials exhibits simultaneously high specific Faraday rotation, MO figure of merit, and effective uniaxial magnetic anisotropy after being crystallized through optimized annealing processes. We demonstrate experimentally that the excellent combination of materials' properties obtained in this garnet nanocomposite is particularly advantageous for developing magneto-photonic crystals as well as optical sensors …


New Class Of Garnet Nanocomposites For Use In Magnetic Photonic Crystals Prepared By Rf Magnetron Co-Sputtering, Mohammad Nur E Alam, Mikhail Vasiliev, Kamal Alameh Apr 2015

New Class Of Garnet Nanocomposites For Use In Magnetic Photonic Crystals Prepared By Rf Magnetron Co-Sputtering, Mohammad Nur E Alam, Mikhail Vasiliev, Kamal Alameh

Mikhail Vasiliev

A new class of magneto-optic garnet nanocomposite materials is prepared using two Bi-substituted iron garnet materials of composition types (Bi,Dy) 3(Fe,Ga)5O12 and Bi3Fe 5O12. A composition adjustment approach is applied by varying the radio frequency (RF) powers driving each sputtering target during the deposition process. This new class of nanocomposite materials exhibits simultaneously high specific Faraday rotation, MO figure of merit, and effective uniaxial magnetic anisotropy after being crystallized through optimized annealing processes. We demonstrate experimentally that the excellent combination of materials' properties obtained in this garnet nanocomposite is particularly advantageous for developing magneto-photonic crystals as well as optical sensors …