Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Purdue University

Series

2019

Discipline
Keyword
Publication

Articles 1 - 26 of 26

Full-Text Articles in Engineering

Debugging: The Key To Unlocking The Mind Of A Novice Programmer?, Anthony A. Lowe Oct 2019

Debugging: The Key To Unlocking The Mind Of A Novice Programmer?, Anthony A. Lowe

School of Engineering Education Graduate Student Series

Novice programmers must master two skills to show lasting success: writing code and, when that fails, the ability to debug it. Instructors spend much time teaching the details of writing code but debugging gets significantly less attention. But what if teaching debugging could implicitly teach other aspects of coding better than teaching a language teaching debugging? This paper explores a new theoretical framework, the Theory of Applied Mind for Programming (TAMP), which merges dual process theory with Jerome Bruner’s theory of representations to model the mind of a programmer. TAMP looks to provide greater explanatory power in why novices struggle …


Model Based Analysis Of The Accuracy And Precision Of Auscultatory Blood Pressure Measurements In Patients With Atrial Fibrillation, Charles F. Babbs Sep 2019

Model Based Analysis Of The Accuracy And Precision Of Auscultatory Blood Pressure Measurements In Patients With Atrial Fibrillation, Charles F. Babbs

Weldon School of Biomedical Engineering Faculty Working Papers

Accurate measurement of blood pressure in the presence of atrial fibrillation remains an open problem. The present study combines the techniques of stochastic mathematical modeling with physiological models of the systemic circulation, cuff, and arm (1) to explore mechanisms underlying both the lack of accuracy and the lack of precision in cuff-based arterial pressure measurements during atrial fibrillation and (2) to develop strategies to correct for errors. Both the cardiovascular system and the measurement technique are described using mathematics, including both numerical techniques and analytical probability theory. Preliminary results with numerical models suggested that, despite variability, average systolic pressures tend …


Ex Vivo Electrochemical Measurement Of Glutamate Release During Spinal Cord Injury, James K. Nolan, Tran N. H. Nguyen, Mara Fattah, Jessica C. Page, Riyi Shi, Hyowon Lee Aug 2019

Ex Vivo Electrochemical Measurement Of Glutamate Release During Spinal Cord Injury, James K. Nolan, Tran N. H. Nguyen, Mara Fattah, Jessica C. Page, Riyi Shi, Hyowon Lee

Weldon School of Biomedical Engineering Faculty Publications

Excessive glutamate release following traumatic spinal cord injury (SCI) has been associated with exacerbating the extent of SCI. However, the mechanism behind sustained high levels of extracellular glutamate is unclear. Spinal cord segments mounted in a sucrose double gap recording chamber are an established model for traumatic spinal cord injury. We have developed a method to record, with micro-scale printed glutamate biosensors, glutamate release from ex vivo rat spinal cord segments following injury. This protocol would work equally well for similar glutamate biosensors.


Subsurface Mimo: A Beamforming Design In Internet Of Underground Things For Digital Agriculture Applications, Abdul Salam Aug 2019

Subsurface Mimo: A Beamforming Design In Internet Of Underground Things For Digital Agriculture Applications, Abdul Salam

Faculty Publications

In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required for the degree of …


A Path Loss Model For Through The Soil Wireless Communications In Digital Agriculture, Abdul Salam Jul 2019

A Path Loss Model For Through The Soil Wireless Communications In Digital Agriculture, Abdul Salam

Faculty Publications

In this paper, a path loss model is developed to predict the impact of soil type, soil moisture, operation frequency, distance, and burial depth of sensors for through-the-soil wireless communications channel. The soil specific model is developed based on empirical measurements in a testbed and field settings. The model can be used in different soils for a frequency range of 100MHz to 1GHz. The standard deviation between measured and predicted path loss is from 4-6dB in the silt loam, sandy, and silty clay loam soil types. The model leads to development of sensor-guided irrigation system in the field of digital …


Underground Soil Sensing Using Subsurface Radio Wave Propagation, Abdul Salam, Akhlaque Ahmad Jul 2019

Underground Soil Sensing Using Subsurface Radio Wave Propagation, Abdul Salam, Akhlaque Ahmad

Faculty Publications

Continuous sensing of soil moisture is essential for smart agriculture variable rate irrigation (VRI), real-time agricultural decision making, and water conservation. Therefore, development of simple techniques to measure the in-situ properties of soil is of vital importance. Moreover, permittivity estimation has applications in electromagnetic (EM) wave propagation analysis in the soil medium, depth analysis, subsurface imaging, and UG localization. Different methods for soil permittivity and moisture estimation are time-domain reflectometry (TDR), ground-penetrating radar (GPR) measurements, and remote sensing. One major bottleneck in the current laboratory-based permittivity estimation techniques is off-line measurement of the collected soil samples. At that, the remote …


A Comparison Of Path Loss Variations In Soil Using Planar And Dipole Antennas, Abdul Salam Jul 2019

A Comparison Of Path Loss Variations In Soil Using Planar And Dipole Antennas, Abdul Salam

Faculty Publications

In this paper, an empirical investigation of propagation path loss variations with frequency in sandy and silty clay loam soils has been done using planar and dipole antennas. The path loss experiments are conducted using vector network analyzer (VNA) in sandy soil testbed, and greenhouse outdoor silty clay loam testbed for different operation frequencies and communication distances. The results show that the planar antenna can be used for subsurface communications in a wide range of operation frequencies. The comparison paves the way for development of sensor-guided irrigation system in the field of digital agriculture.


Turbine Passage Design Methodology To Minimize Entropy Production-A Two-Step Optimization Strategy, Paht Juangphanich, Cis De Maesschalck, Guillermo Paniagua Jun 2019

Turbine Passage Design Methodology To Minimize Entropy Production-A Two-Step Optimization Strategy, Paht Juangphanich, Cis De Maesschalck, Guillermo Paniagua

School of Aeronautics and Astronautics Faculty Publications

Rapid aerodynamic design and optimization is essential for the development of future turbomachinery. The objective of this work is to demonstrate a methodology from 1D mean-line-design to a full 3D aerodynamic optimization of the turbine stage using a parameterization strategy that requires few parameters. The methodology is tested by designing a highly loaded and efficient turbine for the Purdue Experimental Turbine Aerothermal Laboratory. This manuscript describes the entire design process including the 2D/3D parameterization strategy in detail. The objective of the design is to maximize the entropy definition of efficiency while simultaneously maximizing the stage loading. Optimal design trends are …


Breakage Modeling Of Needle-Shaped Particles Using The Discrete Element Method, Rohit Kumar, William Ketterhagen, Avik Sarkar, Jennifer S. Curtis, Carl Wassgren May 2019

Breakage Modeling Of Needle-Shaped Particles Using The Discrete Element Method, Rohit Kumar, William Ketterhagen, Avik Sarkar, Jennifer S. Curtis, Carl Wassgren

School of Mechanical Engineering Faculty Publications

This paper models the breakage of large aspect ratio particles in an attrition cell using discrete element method (DEM) and population balance (PB) models. The particles are modeled in DEM as sphero-cylinders. The stresses within each particle are calculated along the particle length using beam theory and the particle breaks into two parts if the stress exceeds a critical value. Thus, the size distribution changes with time within the DEM model. The DEM model is validated against previously published experimental data.

The simulations demonstrate that particle breakage occurs primarily in front of the attrition cell blades, with the breakage rate …


A Cooperative Overlay Approach At The Physical Layer Of Cognitive Radio For Digital Agriculture, Abdul Salam, Umit Karabiyik May 2019

A Cooperative Overlay Approach At The Physical Layer Of Cognitive Radio For Digital Agriculture, Abdul Salam, Umit Karabiyik

Faculty Publications

In digital agriculture, the cognitive radio technology is being envisaged as solution to spectral shortage problems by allowing agricultural cognitive users to co-exist with noncognitive users in the same spectrum on the field. Cognitive radios increase system capacity and spectral efficiency by sensing the spectrum and adapting the transmission parameters. This design requires a robust, adaptable and flexible physical layer to support cognitive radio functionality. In this paper, a novel physical layer architecture for cognitive radio based on cognition, cooperation, and cognitive interference avoidance has been developed by using power control for digital agriculture applications. The design is based on …


Twitter And Disasters: A Social Resilience Fingerprint, Benjamin A. Rachunok, Jackson B. Bennett, Roshanak Nateghi May 2019

Twitter And Disasters: A Social Resilience Fingerprint, Benjamin A. Rachunok, Jackson B. Bennett, Roshanak Nateghi

Purdue University Libraries Open Access Publishing Fund

Understanding the resilience of a community facing a crisis event is critical to improving its adaptive capacity. Community resilience has been conceptualized as a function of the resilience of components of a community such as ecological, infrastructure, economic, and social systems, etc. In this paper, we introduce the concept of a “resilience fingerprint” and propose a multi-dimensional method for analyzing components of community resilience by leveraging existing definitions of community resilience with data from the social network Twitter. Twitter data from 14 events are analyzed and their resulting resilience fingerprints computed. We compare the fingerprints between events and show that …


2019 Directory Of Indiana State, County, City And Town Officials Responsible For Road And Street Work, Indiana Ltap May 2019

2019 Directory Of Indiana State, County, City And Town Officials Responsible For Road And Street Work, Indiana Ltap

Indiana Local Technical Assistance Program (LTAP) Directory

Contact information for agency officials and employees responsible for Indiana’s local road infrastructure.


Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah Apr 2019

Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah

Faculty Publications

The extra quantities of wastewater entering the pipes can cause backups that result in sanitary sewer overflows. Urban underground infrastructure monitoring is important for controlling the flow of extraneous water into the pipelines. By combining the wireless underground communications and sensor solutions, the urban underground IoT applications such as real time wastewater and storm water overflow monitoring can be developed. In this paper, the path loss analysis of wireless underground communications in urban underground IoT for wastewater monitoring has been presented. It has been shown that the communication range of up to 4 kilometers can be achieved from an underground …


An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam Apr 2019

An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam

Faculty Publications

Underground sensing and propagation of Signals in the Soil (SitS) medium is an electromagnetic issue. The path loss prediction with higher accuracy is an open research subject in digital agriculture monitoring applications for sensing and communications. The statistical data are predominantly derived from site-specific empirical measurements, which is considered an impediment to universal application. Nevertheless, in the existing literature, statistical approaches have been applied to the SitS channel modeling, where impulse response analysis and the Friis open space transmission formula are employed as the channel modeling tool in different soil types under varying soil moisture conditions at diverse communication distances …


Rheo-Physical Characterization Of Microstructure And Flow Behavior Of Concentrated Surfactant Solutions, Eduard Caicedo Casso, Jason E Bice, Lisa R. Nielsen, Jessica L Sargent, Seth Lindberg, Kendra Erk Apr 2019

Rheo-Physical Characterization Of Microstructure And Flow Behavior Of Concentrated Surfactant Solutions, Eduard Caicedo Casso, Jason E Bice, Lisa R. Nielsen, Jessica L Sargent, Seth Lindberg, Kendra Erk

School of Materials Engineering Faculty Publications

Processing-relevant relationships between the microstructure and flow behavior of concentrated surfactant solutions were determined by a combination of basic rheological experiments, rheo-flow velocimetry tests, and flow birefringence measurements. The most common surfactant microstructures found in liquid soaps and other consumer care products—spherical, worm-like, and hexagonally packed micelles and lamellar structures—were recreated by varying the concentration of sodium laureth sulfate in water from 20 to 70 wt% and adding salt in some cases. It was found that common features of flow curves, such as power-law shear thinning behavior, resulted from a wide variety of material responses including shear-induced wall slip in …


The Relationship Between Engineering Identity And Belongingness On Certainty Of Majoring In Engineering For First-Generation College Students, Dina Verdín, Allison Godwin Apr 2019

The Relationship Between Engineering Identity And Belongingness On Certainty Of Majoring In Engineering For First-Generation College Students, Dina Verdín, Allison Godwin

School of Engineering Education Graduate Student Series

This paper seeks to understand the factors that support first-generation college students’ certainty of majoring in engineering. Data used in this study came from thirty-two four-year ABET- accredited institutions across the United States which has a total sample of 790 first-generation college students. We used the frameworks of engineering role identity and sense of belonging to understand the factors that influence first-generation college students’ certainty of majoring in engineering. Certainty is referred to as the degree of confidence or decisiveness an individual has with regard to their chosen occupational plans. First, we examine how first-generation college students’ engineering role identity …


Underground Environment Aware Mimo Design Using Transmit And Receive Beamforming In Internet Of Underground Things, Abdul Salam Apr 2019

Underground Environment Aware Mimo Design Using Transmit And Receive Beamforming In Internet Of Underground Things, Abdul Salam

Faculty Publications

In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required derived the degrees of …


A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak Feb 2019

A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak

Faculty Publications

The realization of Internet of Underground Things (IOUT) relies on the establishment of reliable communication links, where the antenna becomes a major design component due to the significant impacts of soil. In this paper, a theoretical model is developed to capture the impacts of change of soil moisture on the return loss, resonant frequency, and bandwidth of a buried dipole antenna. Experiments are conducted in silty clay loam, sandy, and silt loam soil, to characterize the effects of soil, in an indoor testbed and field testbeds. It is shown that at subsurface burial depths (0.1-0.4m), change in soil moisture impacts …


Improving Human-Machine Collaboration Through Transparency-Based Feedback – Part I: Human Trust And Workload Model, Kumar Akash, Katelyn Polson, Neera Jain Feb 2019

Improving Human-Machine Collaboration Through Transparency-Based Feedback – Part I: Human Trust And Workload Model, Kumar Akash, Katelyn Polson, Neera Jain

School of Mechanical Engineering Faculty Publications

In this paper, we establish a partially observable Markov decision process(POMDP) model framework that captures dynamic changes in human trust and workload for contexts that involve interactions between humans and intelligent decision-aid systems. We use a reconnaissance mission study to elicit a dynamic change in human trust and workload with respect to the system’s reliability and user interface transparency as well as the presence or absence of danger. We use human subject data to estimate transition and observation probabilities of the POMDP model and analyze the trust-workload behavior of humans. Our results indicate that higher transparency is more likely to …


Improving Human-Machine Collaboration Through Transparency-Based Feedback – Part Ii: Control Design And Synthesis, Kumar Akash, Tahira Reid, Neera Jain Feb 2019

Improving Human-Machine Collaboration Through Transparency-Based Feedback – Part Ii: Control Design And Synthesis, Kumar Akash, Tahira Reid, Neera Jain

School of Mechanical Engineering Faculty Publications

To attain improved human-machine collaboration, it is necessary for autonomous systems to infer human trust and workload and respond accordingly. In turn, autonomous systems require models that capture both human trust and workload dynamics. In a companion paper, we developed a trust-workload partially observable Markov decision process (POMDP) model framework that captured changes in human trust and workload for contexts that involve interaction between a human and an intelligent decision-aid system. In this paper, we defne intuitive reward functions and show that these can be readily transformed for integration with the proposed POMDP model. We synthesize a near-optimal control policy …


Effect Of Salt Valency And Concentration On Shear And Extensional Rheology Of Aqueous Polyelectrolyte Solutions For Enhanced Oil Recovery, Anna V. Walter, Leidy N. Jimenez, Jelena Dinic, Vivek Sharma, Kendra Erk Jan 2019

Effect Of Salt Valency And Concentration On Shear And Extensional Rheology Of Aqueous Polyelectrolyte Solutions For Enhanced Oil Recovery, Anna V. Walter, Leidy N. Jimenez, Jelena Dinic, Vivek Sharma, Kendra Erk

School of Materials Engineering Faculty Publications

The injection of polymer solutions into an oil basin can lead to enhanced oil recovery (EOR) by increasing the microscopic sweep of the reservoir, improving the water-oil motility ratio, and thus leading to greater yield from oil fields. In this contribution, we characterize both shear and extensional rheological response of aqueous solutions of partially hydrolyzed polyacrylamide (HPAM), the most commonly used polymer for EOR, for velocity gradients in both the flow direction (extensional) and perpendicular to flow (shear) arise in EOR applications. As HPAM is a charged polymer, to better emulate the environment in oil basins, the rheological response was …


Limitations Of Zt As A Figure Of Merit For Nanostructured Thermoelectric Materials, Xufeng Wang, Mark Lundstrom Jan 2019

Limitations Of Zt As A Figure Of Merit For Nanostructured Thermoelectric Materials, Xufeng Wang, Mark Lundstrom

Department of Electrical and Computer Engineering Faculty Publications

Thermoelectric properties of nanocomposites are numerically studied as a function of average grain size or nanoparticle density by simulating the measurements as they would be done experimentally. In accordance with previous theoretical and experimental results, we find that the Seebeck coefficient, power factor and figure of merit, zT, can be increased by nanostructuring when energy barriers exist around the grain boundaries or embedded nanoparticles. When we simulate the performance of a thermoelectric cooler with the same material, however, we find that the maximum temperature difference is much less than expected from the given zT. This occurs because the …


Board 51: An Initial Step Towards Measuring First-Generation College Students’ Personal Agency: A Scale Validation, Dina Verdín, Allison Godwin Jan 2019

Board 51: An Initial Step Towards Measuring First-Generation College Students’ Personal Agency: A Scale Validation, Dina Verdín, Allison Godwin

School of Engineering Education Graduate Student Series

This research paper describes the development of a scale to measure how first-generation college students use engineering as a tool for making a difference in their community and world or personal agency. Personal agency is a capability that every individual holds; it is described by Bandura as an individual’s beliefs about their capabilities to exercise control over events that affect their lives through purposeful and reflective actions. Agentic actions allow students to explore, maneuver and impact their environment for the achievement of a goal or set of goals. This study identifies how cognitive processes of forethought, intention, reactivity, and reflection …


Eager: Broadening Participation Of First-Generation College Student, Jessica M. Smith, Dina Verdín, Juan C. Lucena Jan 2019

Eager: Broadening Participation Of First-Generation College Student, Jessica M. Smith, Dina Verdín, Juan C. Lucena

School of Engineering Education Graduate Student Series

No abstract provided.


Internet Of Things In Smart Agriculture: Enabling Technologies, Abdul Salam, Syed Shah Jan 2019

Internet Of Things In Smart Agriculture: Enabling Technologies, Abdul Salam, Syed Shah

Faculty Publications

In this paper, an IoT technology research and innovation roadmap for the field of precision agriculture (PA) is presented. Many recent practical trends and the challenges have been highlighted. Some important objectives for integrated technology research and education in precision agriculture are described. Effective IoT based communications and sensing approaches to mitigate challenges in the area of precision agriculture are presented.


Recognizing Engineering Students’ Funds Of Knowledge: Creating And Validating Survey Measures, Dina Verdín, Jessica M. Smith, Juan Lucena Jan 2019

Recognizing Engineering Students’ Funds Of Knowledge: Creating And Validating Survey Measures, Dina Verdín, Jessica M. Smith, Juan Lucena

School of Engineering Education Graduate Student Series

This research base paper examines students who are the first in their families to attend college. Our research seeks to understand the role students’ funds of knowledge makes in first-generation college students’ undergraduate experience. Funds of knowledge are the set of formal/informal knowledge and skills that students learn through family, friends, and communities outside of academic institutions. This paper reports funds of knowledge themes relevant to first-generation college students in engineering and the process of gathering validity evidence to support the funds of knowledge themes.

Using ethnographic and interview data, six themes emerged: connecting experiences, community networks, tinkering knowledge, perspective …