Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Effects Of Hip And Ankle Moments On Running Stability: Simulation Of A Simplified Model, Rubin C. Cholera Oct 2014

Effects Of Hip And Ankle Moments On Running Stability: Simulation Of A Simplified Model, Rubin C. Cholera

Open Access Theses

In human running, the ankle, knee, and hip moments are known to play different roles to influence the dynamics of locomotion. A recent study of hip moments and several hip-based legged robots have revealed that hip actuation can significantly improve the stability of locomotion, whether controlled or uncontrolled. Ankle moments are expected to also significantly affect running stability, but in a different way than hip moments. Here we seek to advance the current theory of dynamic running and associated legged robots by determining how simple open-loop ankle moments could affect running stability. We simulate a dynamical model, and compare it …


Analysis Of An Actuated Two Segment Leg Model Of Locomotion, Nikhil Vinayak Rao Jan 2013

Analysis Of An Actuated Two Segment Leg Model Of Locomotion, Nikhil Vinayak Rao

Open Access Theses

Research studies on dynamic models of legged locomotion have generally focused on telescoping-type leg models. Such telescoping spring loaded inverted pendulum (SLIP) models have been able to accurately predict observed center of mass (CoM) trajectories. There have been comparatively fewer studies on dynamics of locomotion

with segmented legs. Some earlier studies on the dynamics due to leg segmentation appear straightforward. For example, a simple model with the only joint moment being due to a passive springy knee has been shown to behave similarly to a telescoping spring-mass model. However, in real-life animal locomotion, there are multiple joint-moments acting at the …


Design Of A Running Robot And The Effects Of Foot Placement In The Transverse Plane, Timothy James Sullivan Jan 2013

Design Of A Running Robot And The Effects Of Foot Placement In The Transverse Plane, Timothy James Sullivan

Open Access Theses

The purpose of this thesis is to make advances in the design of humanoid bipedal running robots. We focus on achieving dynamic running locomotion because it is one metric by which we can measure how far robotic technologies have advanced, in relation to existing benchmarks set by humans and other animals. Designing a running human-inspired robot is challenging because human bodies are exceptionally complex mechanisms to mimic. There are only a few humanoid robots designed specifically for running and the existing robots are either constrained to a plane, do not yet exhibit human-like motion, or are unstable.

One aspect of …