Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav Kotov, Yong Lee Apr 2015

Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav Kotov, Yong Lee

Mikhail Vasiliev

No abstract provided.


Nano-Structured Magnetic Photonic Crystals For Magneto-Optic Polarization Controllers At The Communication-Band Wavelengths, Mohammad Nur-E-Alam, Mikhail Vasiliev, Kamal Alameh Apr 2015

Nano-Structured Magnetic Photonic Crystals For Magneto-Optic Polarization Controllers At The Communication-Band Wavelengths, Mohammad Nur-E-Alam, Mikhail Vasiliev, Kamal Alameh

Mikhail Vasiliev

No abstract provided.


Asymmetrical Two-Dimensional Magnetic Lattices For Ultracold Atoms, Ahmed Abdelrahman, Mikhail Vasiliev, Kamal Alameh, Peter Hannaford Apr 2015

Asymmetrical Two-Dimensional Magnetic Lattices For Ultracold Atoms, Ahmed Abdelrahman, Mikhail Vasiliev, Kamal Alameh, Peter Hannaford

Mikhail Vasiliev

A simple method for implementing an asymmetrical two-dimensional magnetic lattice is proposed. The asymmetrical two-dimensional magnetic lattice is created by periodically distributing nonzero magnetic minima across the surface of a magnetic thin film, where the magnetic patterns are formed by milling n × n square holes on the surface of the film. The method is proposed for trapping and confining quantum degenerate gases, such as Bose-Einstein condensates and ultracold Fermi gases, repared in low-magnetic-field-seeking states. Analytical expressions and numerical simulation results of the magnetic local minima are shown where we analyze the effect of changing the magnetic lattice parameters, such …


Modification Of Bi:Yig Film Properties By Substrate Surface Ion Pre-Treatment, A. Shaposhnikov, A. Prokopov, A. Karavainikov, V. Berzhansky, T. Mikhailova, V. Kotov, D. Balabanov, I. Sharay, O. Salyuk, Mikhail Vasiliev, V. Golub Apr 2015

Modification Of Bi:Yig Film Properties By Substrate Surface Ion Pre-Treatment, A. Shaposhnikov, A. Prokopov, A. Karavainikov, V. Berzhansky, T. Mikhailova, V. Kotov, D. Balabanov, I. Sharay, O. Salyuk, Mikhail Vasiliev, V. Golub

Mikhail Vasiliev

The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd3Ga5O12 substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi2.8Y0.2Fe5O12 was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar+ ion beams is a result of the substrate surface amorphization caused by the ion bombardment.


Magnetic Heterostructures With Low Coercivity For High-Performance Magneto-Optic Devices, V. Kotov, A. Popkov, S. Soloviev, Mikhail Vasiliev, Kamal Alameh, Mohammad Alam, D. Balabanov Apr 2015

Magnetic Heterostructures With Low Coercivity For High-Performance Magneto-Optic Devices, V. Kotov, A. Popkov, S. Soloviev, Mikhail Vasiliev, Kamal Alameh, Mohammad Alam, D. Balabanov

Mikhail Vasiliev

In this work, we analyse the method of forming magneto-optically active heterostructures based on magnetic layers with different magnetic properties. Layers of one type possess a high effective constant of uniaxial magnetic anisotropy for which the condition is fulfilled, where Ku is the constant of uniaxial magnetic anisotropy and is the demagnetizing energy, and layers of the second type used possess in-plane or quasi-in-plane magnetization, in which the condition holds true. The layers of the first type, which we refer to as layers of positive effective uniaxial magnetic anisotropy, may have the composition Bi2Dy1Fe4Ga1O12 and the layers of second type …