Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

External Link

Conference Proceedings

Power and Energy

José Oscar Mur-Miranda

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Peak Wireless Power Transfer Using Magnetically Coupled Series Resonators, José Oscar Mur-Miranda, Giulia Fanti Jul 2012

Peak Wireless Power Transfer Using Magnetically Coupled Series Resonators, José Oscar Mur-Miranda, Giulia Fanti

José Oscar Mur-Miranda

Wireless power transfer can create the illusion of portable devices with infinite power supplies. Power transfer using magnetically coupled series resonators is maximized when the load presented to the sender is matched to the series impedance of the source. This determines an optimal separation distance between the sender and the receiver. However, the maximum power transferred only depends on the losses in the system and is independent of this distance and the resonant frequency. Closed-form expressions describe the power transferred and efficiency for all distances and system values. These expressions are validated with systems operating at 23 kHz, 40 kHz …


Wireless Power Transfer Using Weakly Coupled Magnetostatic Resonators, José Oscar Mur-Miranda, Giulia Fanti, Yifei Feng, Keerthik Omanakuttan, Roydan Ongie, Albert Setjoadi, Natalie Sharpe Jul 2012

Wireless Power Transfer Using Weakly Coupled Magnetostatic Resonators, José Oscar Mur-Miranda, Giulia Fanti, Yifei Feng, Keerthik Omanakuttan, Roydan Ongie, Albert Setjoadi, Natalie Sharpe

José Oscar Mur-Miranda

Wireless power transfer can create the illusion of portable devices with infinite power supplies and enable applications that are currently unimaginable because of power constraints. Magnetic induction has been extensively used for wireless power transfer, but its efficiency depends on magnetic coupling that decays as the inverse cube of distance. At long enough distances, the magnetic coupling is weak enough that the effect of the receiver coil on the sender coil can be neglected. In this weakly coupled limit, series resonance in both the sender and the receiver increases the power transfer. Compared to magnetic induction, the power transfer increases …