Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

External Link

Conference Proceedings

Electrical and Electronics

Articles 1 - 19 of 19

Full-Text Articles in Engineering

Power Mems And Microengines, Alan Epstein, Stephen Senturia, G. Ananthasuresh, Arturo Ayon, Kenneth Breuer, Kuo-Shen Chen, Fredric Ehrich, Gautam Gauba, Reza Ghodssi, C. Groshenry, Stuart Jacobson, Jeffrey Lang, Chuang-Chia Lin, Amit Mehra, José Oscar Mur-Miranda, Steve Nagle, D. Orr, Ed Piekos, Martin Schmidt, Gregory Shirley, Mark Spearing, Choon Tan, Sheng-Yang Tzeng, Ian Waitz Jul 2012

Power Mems And Microengines, Alan Epstein, Stephen Senturia, G. Ananthasuresh, Arturo Ayon, Kenneth Breuer, Kuo-Shen Chen, Fredric Ehrich, Gautam Gauba, Reza Ghodssi, C. Groshenry, Stuart Jacobson, Jeffrey Lang, Chuang-Chia Lin, Amit Mehra, José Oscar Mur-Miranda, Steve Nagle, D. Orr, Ed Piekos, Martin Schmidt, Gregory Shirley, Mark Spearing, Choon Tan, Sheng-Yang Tzeng, Ian Waitz

José Oscar Mur-Miranda

MIT is developing a MEMS-based gas turbine generator. Based on high speed rotating machinery, this 1 cm diameter by 3 mm thick SiC heat engine is designed to produce 10-20 W of electric power while consuming 10 grams/hr of H2. Later versions may produce up to 100 W using hydrocarbon fuels. The combustor is now operating and an 80 W micro-turbine has been fabricated and is being tested. This engine can be considered the first of a new class of MEMS device, power MEMS, which are heat engines operating at power densities similar to those of the best large scale …


Floating-Gate Devices: They Are Not Just For Digital Memories Anymore, Paul Hasler, Bradley Minch, Chris Diorio Jul 2012

Floating-Gate Devices: They Are Not Just For Digital Memories Anymore, Paul Hasler, Bradley Minch, Chris Diorio

Bradley Minch

Since the first reported floating-gate structure in 1967, floating-gate transistors have been used widely to store digital information for long periods in structures such as EPROMs and EEPROMs. Recently floating-gate devices have found applications as analog memories, analog and digital circuit elements, and adaptive processing elements. Floating-gate devices have found commerical applications, e.g. ISD, for long-term non-volatile information storage devices for analog applications. The focus of floating-gate devices has been towards fabrication in standard CMOS processes, as opposed to the specialized processes for fabricating digital non-volatile memories. Floating-gate circuits can be designed at any or all of three levels: analog …


A Floating-Gate Technology For Digital Cmos Processes, Bradley Minch, Paul Hasler Jul 2012

A Floating-Gate Technology For Digital Cmos Processes, Bradley Minch, Paul Hasler

Bradley Minch

We discuss the possibility of developing high-quality floating-gate memories and circuits in digital CMOS technologies that have only one layer of polysilicon. Here, the primary concern is whether or not we can get adequate control-gate linearity from MOS capacitors. We employ two experimental procedures to address this issue and find acceptable floating-gate circuit behaviour with MOS capacitors. First, we simultaneously characterize an MOS capacitor and a linear capacitor; the experimental data show that MOS capacitors behave similarly to linear capacitors over a finite, but usable range. Second, we characterize two typical floating-gateMOS circuit primitives, a floating-gate amplifier and a multiple-input …


Adaptive Circuits Using Pfet Floating-Gate Devices, Paul Hasler, Bradley Minch, Chris Diorio Jul 2012

Adaptive Circuits Using Pfet Floating-Gate Devices, Paul Hasler, Bradley Minch, Chris Diorio

Bradley Minch

In this paper, we describe our floating-gate pFET device, with its many circuit applications and supporting experimental measurements. We developed these devices in standard double-poly CMOS technologies by utilizing many effects inherent in these processes. We add floating-gate charge by electron tunneling, and we remove floating-gate charge by hot-electron injection. With this floating-gate technology, we cannot only build analog EEPROMs, we can also implement adaptation and learning when we consider floating-gate devices to be circuit elements with important time-domain dynamics. We start by discussing non-adaptive properties of floating-gate devices and we present two representative non-adaptive applications. First, we discuss using …


Medic: A Legged Millirobot Utilizing Novel Obstacle Traversal, Nicholas Kohut, Aaron Hoover, Kevin Ma, Stanley Baek, Ronald Fearing Jul 2012

Medic: A Legged Millirobot Utilizing Novel Obstacle Traversal, Nicholas Kohut, Aaron Hoover, Kevin Ma, Stanley Baek, Ronald Fearing

Aaron M. Hoover

This work presents the design, fabrication, capabilities, and obstacle traversal mechanics of MEDIC (MillirobotEnabled Diagnostic of Integrated Circuits), a small legged robot able to overcome a varied array of obstacles. MEDIC features a hull that keeps its body in contact with the ground at all times, and uses only four actuators to move forward, turn, mount obstacles, and move in reverse. The chassis is fabricated using a Smart Composite Microstructures (SCM) approach and the robot is actuated by coiled Shape Memory Alloy (SMA). MEDIC also features a camera which will be useful for navigation in the future.


Synthesis Of Dynamic Multiple-Input Translinear Element Networks, Bradley Minch Jul 2012

Synthesis Of Dynamic Multiple-Input Translinear Element Networks, Bradley Minch

Bradley Minch

In this paper, the author discusses an approach to the synthesis of dynamic translinear circuits built from multiple-input translation elements (MITEs). In this method, we realize separately the basic static nonlinearities and dynamic signal-processing functions that when cascaded together, form the system that one wishes to construct. The circuit is then simplified systematically through local transformations that do not alter the behavior of the system. The author illustrates the method by synthesizing a simple nonlinear dynamical system, an RMS-DC converter.


Synthesis Of A Translinear Analog Adaptive Filter, Eric Mcdonald, Bradley Minch Jul 2012

Synthesis Of A Translinear Analog Adaptive Filter, Eric Mcdonald, Bradley Minch

Bradley Minch

In this paper, we present a methodology for synthesizing analog systems using a class of circuits called dynamic translinear circuits. We illustrate this method by synthesizing part of a Least-Mean-Squares (LMS) adaptation algorithm used in an analog adaptive filter. We present preliminary experimental results from a chip fabricated ina 0.5-μm double-poly CMOS process.


Inverting The Bipolar Differential Pair For Low-Voltage Applications, Bradley Minch Jul 2012

Inverting The Bipolar Differential Pair For Low-Voltage Applications, Bradley Minch

Bradley Minch

In this paper, the author presents a new bipolar differential transconductor that functions just like an emitter-degenerated differential pair, except for the following: it operates on a low power supply; it has a rail-to-rail common-mode input-voltage range; permits a wide output-voltage swing; has a transconductance gain that is nearly constant with the common-mode input voltage; and requires only n-p-n transistors in the signal path. We describe intuitively how the circuit functions and provide DC measurements from a prototype circuit, breadboarded from a quad TPQ3904 and a thick-film resistor array demonstrating proper operation on a single-ended 1.2-V power supply.


Synthesis Of Multiple-Input Translinear Element Log-Domain Filters, Bradley Minch Jul 2012

Synthesis Of Multiple-Input Translinear Element Log-Domain Filters, Bradley Minch

Bradley Minch

I present a simple procedure for synthesizing multiple-input translinear element (MITE) log-domain filters from state-space descriptions. We can obtain such state-space descriptions from a variety of sources, and the procedure that I describe can be utilized regardless of the source of the description. We can often derive such descriptions conveniently from already extant filters that have been previously implemented using a different class of filters. I shall illustrate the synthesis procedure by deriving two simple MITE log-domain filters from single-ended voltage-mode OTA-C filter prototypes-I synthesize both a first-order lowpass filter and a fully tunable second-order lowpass filter.


A Low-Voltage Mos Cascode Bias Circuit For All Current Levels, Bradley Minch Jul 2012

A Low-Voltage Mos Cascode Bias Circuit For All Current Levels, Bradley Minch

Bradley Minch

In this paper, the author describes a simple low-voltage MOS cascode bias circuit that functions well at all current levels, ranging from weak inversion to strong inversion. He describes an approach to defining the onset of saturation that is generally useful from a bias-circuit design viewpoint and explains specifically how it was used in designing the low-voltage cascode bias circuit. The author discusses an efficient strategy for laying out the cell in the full-stacked style. He also presents experimental results from a version of the bias circuit that was fabricated in a 1.2-μm CMOS process.


Multi-Level Simulation Of A Translinear Analog Adaptive Filter, Eric Mcdonald, Bradley Minch Jul 2012

Multi-Level Simulation Of A Translinear Analog Adaptive Filter, Eric Mcdonald, Bradley Minch

Bradley Minch

In this paper, we briefly discuss a methodology for synthesizing analog systems from a high-level behavioral specification using a class of circuits called dynamic translinear circuits. We illustrate this method by synthesizing a Least-Mean-Square (LMS) adaptation algorithm used in an analog adaptive filter. The resulting systems can be simulated at various levels of abstraction during the design phase. As an example, we presentsimulation results from a four-tap analog adaptive filter simulated using Matlab and SPICE.


A Folded Floating-Gate Differential Pair For Low-Voltage Applications, Bradley Minch Jul 2012

A Folded Floating-Gate Differential Pair For Low-Voltage Applications, Bradley Minch

Bradley Minch

The author presents a new folded differential pair topology that is suitable for low-voltage applications. The new differential pair is made from floating-gate MOS (FGMOS) transistors and simultaneously provides a rail-to-rail common-mode input voltage range with a high rejection of the common-mode input voltage by keeping the sum of the two output currents fixed. Moreover, when biased in weak or moderate inversion, the allowable output voltage swing is also almost from rail-to-rail. The author discusses the operation of the circuit and some of the trade-offs involved in its design. He also shows experimental measurements from a version of the circuit, …


A Transistor-Only Circuit Model Of The Autozeroing Floating-Gate Amplifier, Paul Hasler, Matt Kucic, Bradley Minch Jul 2012

A Transistor-Only Circuit Model Of The Autozeroing Floating-Gate Amplifier, Paul Hasler, Matt Kucic, Bradley Minch

Bradley Minch

We developed an transistor-only version of our autozeroing floating-gate amplifier (AFGA). We use a subthreshold transistor to model the behavior of an electron-tunneling device, and we use another subthreshold transistor to model the behavior of pFET hot-electron injection. We have derived analytical models that completely characterize the amplifier and that are in good agreement with experimental data. This circuit is a bandpass filter, and behaves similarly to the AFGA with different operating parameters. Both the low-frequency and high-frequency cutoffs are controlled electronically, as is done in continuous-time filters. This circuit has a low-frequency cutoff at frequencies above 1 Hz, and …


A Simple Way To Extend The Common-Mode Input-Voltage Range Of The Mos Differential Pair, Bradley Minch Jul 2012

A Simple Way To Extend The Common-Mode Input-Voltage Range Of The Mos Differential Pair, Bradley Minch

Bradley Minch

In this paper, we describe a simple technique involving indirect negative feedback that extends the useable common-mode input-voltage range of the MOS differential pair by a saturation voltage. In this method, we use a replica differential pair to sense when the bias transistor supplying the tail current falls out of saturation. We then set the bias voltage so that the sum of the two differential-pair output currents is equal to the bias current. We present experimental results from a version of the differential pair that was fabricated in a 0.5 μm CMOS process along with a comparison with an identical …


Synthesis Of Mite Log-Domain Filters With Unique Operating Points, Shyam Subramanian, David Anderson, Paul Hasler, Bradley Minch Jul 2012

Synthesis Of Mite Log-Domain Filters With Unique Operating Points, Shyam Subramanian, David Anderson, Paul Hasler, Bradley Minch

Bradley Minch

Practical log-domain filter circuits might have multiple operating points in regions in which the translinear element does not obey the exponential law. In this paper, a method is proposed to implement any filter by a log-domain circuit that necessarily has a unique operating point. Any state-space description of the filter is shown to have an equivalent description that can be implemented by such a circuit. This methodology is applied to the synthesis of multiple-input translinear element (MITE) filters. As an example, shifted-companion-form (SCF) filters are synthesized. Further, it is proved that the resulting filters have a unique operating point.


Low-Voltage Wilson Current Mirrors In Cmos, Bradley Minch Jul 2012

Low-Voltage Wilson Current Mirrors In Cmos, Bradley Minch

Bradley Minch

In this paper, we describe three simple low-voltage CMOS analogs of the Wilson current mirror that function well at all current levels, ranging from weak inversion to strong inversion. Each of these current mirrors can operate on a low power-supply voltage of a diode drop plus two saturation voltages and features a wide output-voltage swing with a cascode-type incremental output impedance. Two of the circuits requires an input voltage of a diode drop plus a saturation voltage while the third one features a low input voltage of a saturation voltage. We present experimental results from versions of these three current …


Floating-Gate Techniques For Assessing Mismatch, Bradley Minch Jul 2012

Floating-Gate Techniques For Assessing Mismatch, Bradley Minch

Bradley Minch

I discuss the importance of capacitor matching in the context of using charge stored on floating-gate MOS (FGMOS) transistors to compensate for transistor mismatch in analog circuits. I describe a simple technique that only involves static measurements for assessing the relative mismatch between capacitors. I also show experimental measurements of capacitor mismatch for small capacitors fabricated in 1.2-μm and 0.35-μm double-poly it n-well CMOS process that are commonly available.


A Simple Class-Ab Transconductor In Cmos, Bradley Minch Jul 2012

A Simple Class-Ab Transconductor In Cmos, Bradley Minch

Bradley Minch

In this paper, we present a simple class-AB CMOS transconductor, which is based on Delbriick's bump/antibump circuit, whose differential output current is an expansive nonlinear function of its differential-mode input voltage. We describe the operation of the new transconductor qualitatively and derive an analytical model of its output currents from the Enz-Krummenacher-Vittoz (EKV) model of the MOS transistor. We also provide experimental measurements of the DC transfer characteristics of a version of the circuit that was fabricated in a 0.5-mumCMOS process through MOSIS.


Evolution Of A Folded Floating-Gate Differential Pair, Bradley Minch Jul 2012

Evolution Of A Folded Floating-Gate Differential Pair, Bradley Minch

Bradley Minch

The author presents a folded floating-gate MOS (FGMOS) differential pair circuit that is capable of simultaneously providing a rail-to-rail common-mode input voltage range and a rail-to-rail output voltage swing with a low power-supply voltage. In this configuration, the voltage drop across the bias current source is folded up into the same range over which the output voltages swing, facilitating low-voltage operation. The floating-gate charge can be used to trim out the offset voltage of the differential pair and to reduce the required power-supply voltage for a given bias current level. The author provides both a qualitative description of how the …