Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Klein Tunneling And Cone Transport In Aa-Stacked Bilayer Graphene, Matthew Sanderson, Yee Sin Ang, C Zhang Jan 2015

Klein Tunneling And Cone Transport In Aa-Stacked Bilayer Graphene, Matthew Sanderson, Yee Sin Ang, C Zhang

Yee Sin Ang

We investigate the quantum tunneling of electrons in an AA-stacked bilayer graphene (BLG) n-p junction and n-p-n junction. We show that Klein tunneling of an electron can occur in this system. The quasiparticles are not only chiral but are additionally described by a "cone index." Due to the orthogonality of states with different cone indexes, electron transport across a potential barrier must strictly conserve the cone index, and this leads to the protected cone transport which is unique in AA-stacked BLG. Together with the negative refraction of electrons, electrons residing in different cones can be spatially separated according to their …


Transport Critical Current Of Mgb2 Wires: Pulsed Current Of Varying Rate Compared To Direct Current Method, K See, X Xu, J Horvat, C Cook, S. Dou Oct 2012

Transport Critical Current Of Mgb2 Wires: Pulsed Current Of Varying Rate Compared To Direct Current Method, K See, X Xu, J Horvat, C Cook, S. Dou

Christopher Cook

The measurement of transport critical current (Ic) forMgB2 wires and tapes has been investigated with two different techniques, the conventional four-probe arrangement with direct current (DC) power source, and a tailored triangle pulse at different rates of current change. The DC method has been widely used and practiced by various groups, but suffers from inevitable heating effects when high currents are used at low magnetic fields. The pulsed current method has no heating effects, but the critical current can depend on the rate of the current change (dI/dt) in the pulse. Our pulsed current measurements with varying dI/dt show that …


Biomaterial-Microvasculature Interactions, Alisha Sarang-Sieminski, Keith Gooch Apr 2012

Biomaterial-Microvasculature Interactions, Alisha Sarang-Sieminski, Keith Gooch

Alisha L. Sarang-Sieminski

The utility of implanted sensors, drug-delivery systems, immunoisolation devices, engineered cells, and engineered tissues can be limited by inadequate transport to and from the circulation. As the primary function of the microvasculature is to facilitate transport between the circulation and the surrounding tissue, interactionsbetween biomaterials and the microvasculature have been explored to understand the mechanisms controlling transport to implanted objects and ultimately improve it. This review surveys work on biomaterial-microvasculature interactions with a focus on the use of biomaterials to regulate the structure and function of the microvasculature. Several applications in which biomaterial-microvasculature interactions play a crucial role are briefly …