Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

External Link

Selected Works

Vincent G. Harris

Magnetoelectric coupling

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Tunable Fringe Magnetic Fields Induced By Converse Magnetoelectric Coupling In A Fega/Pmn-Pt Multiferroic Heterostructure, Trifon Fitchorov, Yajie Chen, Bolin Hu, Scott Gillette, Anton Geiler, Carmine Vittoria, Vincent Harris Aug 2013

Tunable Fringe Magnetic Fields Induced By Converse Magnetoelectric Coupling In A Fega/Pmn-Pt Multiferroic Heterostructure, Trifon Fitchorov, Yajie Chen, Bolin Hu, Scott Gillette, Anton Geiler, Carmine Vittoria, Vincent Harris

Vincent G. Harris

The fringe magnetic field, induced by magnetoelectric coupling in a bilayer Fe-Ga/Pb(Mg1/3Nb2/3)O3_PbTiO3 (PMN-PT) multifunctional composite, was investigated. The induced external field is characterized as having a butterfly hysteresis loop when tuned by an applied electric field. A tuning coefficient of the electrically induced fringe magnetic field is derived from the piezoelectric and magnetostrictive properties of the composite. A measured maximum tuning coefficient, 4.5 Oe/(kV cm−1), is found to agree well with theoretical prediction. This work establishes a foundation in the design of transducers based on the magnetoelectric effect.


Microwave Magnetoelectric Coupling And Ferromagnetic Resonance Frequency Tuning Of A Co₂Mnsb/Gaas/Pzn-Pt Heterostructure, Yajie Chen, Aria Yang, Moti Paudel, Shane Stadler, C. Vittoria, V. Harris Apr 2012

Microwave Magnetoelectric Coupling And Ferromagnetic Resonance Frequency Tuning Of A Co₂Mnsb/Gaas/Pzn-Pt Heterostructure, Yajie Chen, Aria Yang, Moti Paudel, Shane Stadler, C. Vittoria, V. Harris

Vincent G. Harris

A systematic study of electric-field-tuned ferromagnetic resonance (FMR) of a ferroelectric/ferromagnetic/semiconductor multiferroic heterostructure, consisting of a Co₂MnSb epitaxial film grown on a GaAs substrate bonded to a lead zinc niobate-lead titanate crystal, is reported. The films, grown by pulsed laser deposition, were studied for their crystallographic structure, magnetocrystalline anisotropy, and magnetostrictive and ferromagnetic resonance properties. Ferromagnetic resonance measurements were carried out at X-band frequency under the application of electric fields with external magnetic fields applied along the [110], [100], [1Ī0] and [001] directions of the Heusler film. Magnetic anisotropy fields were derived from the angular dependence of FMR measurements, yielding …