Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

External Link

Chemical Engineering

Pulsed laser deposition

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Exploration Of Magnetoelectric Thin-Film Sensors Using Supperlattice Composition Spreads, K.-S. Chang, M. Aronova, C. Gao, C. Lin, Jason Hattrick-Simpers, M. Murakami, I. Takeuchi Mar 2015

Exploration Of Magnetoelectric Thin-Film Sensors Using Supperlattice Composition Spreads, K.-S. Chang, M. Aronova, C. Gao, C. Lin, Jason Hattrick-Simpers, M. Murakami, I. Takeuchi

Jason R. Hattrick-Simpers

No abstract provided.


Enhanced Dielectric Properties In Single Crystal-Like Bifeo3 Thin Films Grown By Flux-Mediated Epitaxy, S.-H. Lim, M. Murakami, J. Yang, S.-Y. Young, Jason Hattrick-Simpers, M. Wuttig, L. Salamanca-Riba, I. Takeuchi Mar 2015

Enhanced Dielectric Properties In Single Crystal-Like Bifeo3 Thin Films Grown By Flux-Mediated Epitaxy, S.-H. Lim, M. Murakami, J. Yang, S.-Y. Young, Jason Hattrick-Simpers, M. Wuttig, L. Salamanca-Riba, I. Takeuchi

Jason R. Hattrick-Simpers

We have fabricated single crystal-like BiFeO3 (BFO) thin films by flux-mediated epitaxy using pulsed laser deposition(PLD). The Bi–Cu–O flux composition and its thickness were optimized using composition spread, thickness gradient, and temperature gradient libraries. The optimized BFO thin films grown with this technique showed larger grain size of ∼2μm and higher dielectric constant in the range of 260–340 than those for standard PLD grown films. In addition, the leakage current density of the films was reduced by two orders of magnitude compared to that of standard PLD grown films.


Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Yoon, Tomokuza Sakai, Anton Geiler, Aria Yang, Yongxue He, Katherine Ziemer, Nian Sun, C. Vittoria Apr 2012

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Yoon, Tomokuza Sakai, Anton Geiler, Aria Yang, Yongxue He, Katherine Ziemer, Nian Sun, C. Vittoria

Nian X. Sun

Next generation magnetic microwave devices require ferrite films to be thick (>300 μm), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.


Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Yoon, Tomokuza Sakai, Anton Geiler, Aria Yang, Yongxue He, Katherine Ziemer, Nian Sun, C. Vittoria Apr 2011

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Yoon, Tomokuza Sakai, Anton Geiler, Aria Yang, Yongxue He, Katherine Ziemer, Nian Sun, C. Vittoria

Vincent G. Harris

Next generation magnetic microwave devices require ferrite films to be thick (>300 μm), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.