Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Design, Analysis, And Simulation Of A Jitter Reduction Circuit (Jrc) System At 1ghz, Run Bin Yu Dec 2016

Design, Analysis, And Simulation Of A Jitter Reduction Circuit (Jrc) System At 1ghz, Run Bin Yu

Master's Theses

The clock signal is considered as the “heartbeat” of a digital system yet jitter which is a variation on the arrival time of the clock edge, could undermine the overall performance or even cause failures on the system. Deterministic jitter could be reduced during the designing process however random jitter during operation is somehow less-controllable and unavoidable. Being able to remove jitter on the clock would therefore play a vital role in system performance improvement.

This thesis implements a 1GHz fully feedforward jitter reduction circuit (JRC) which can be used as an on-chip IP core at clock tree terminals to …


Design Of An Integrated Acceleration Acquisition Subsystem To Satisfy High-Speed And Low-Area Requirements For Cubesats, Ryan J. Rumsey Jun 2016

Design Of An Integrated Acceleration Acquisition Subsystem To Satisfy High-Speed And Low-Area Requirements For Cubesats, Ryan J. Rumsey

Master's Theses

Cal Poly San Luis Obispo’s PolySat team is designing the Multipurpose Orbital Spring Ejection System (MOSES) in order to record acceleration data during the launch of CubeSats as well as to provide GPS coordinates to locate the position of CubeSats once they are injected into orbit. This work focuses on the design and development of the acceleration data acquisition (DAQ) subsystem of MOSES. This subsystem is designed around the need for a high-speed sampling system of at least 200 kHz across four channels of data, plus low-area limitations in the MOSES form factor which is roughly half the size of …


Oceanographic Instrument Simulator, Amy Chen Mar 2016

Oceanographic Instrument Simulator, Amy Chen

Master's Theses

The Monterey Bay Aquarium Research Institute (MBARI) established the Free Ocean Carbon Enrichment (FOCE) experiment to study the long-term effects of decreased ocean pH levels by developing in-situ platforms [1]. Deep FOCE (dpFOCE) was the first platform, which was deployed in 950 meters of water in Monterey Bay. After the conclusion of dpFOCE, MBARI developed an open source shallow water FOCE (swFOCE) platform located at around 250 meter of water to facilitate worldwide shallow water experiments on FOCE [1][2]. A shallow water platform can be more ubiquitous than a deep-water platform as shallow water instruments are less expensive (as it …