Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Formal Analysis Of Arithmetic Circuits Using Computer Algebra - Verification, Abstraction And Reverse Engineering, Cunxi Yu Nov 2017

Formal Analysis Of Arithmetic Circuits Using Computer Algebra - Verification, Abstraction And Reverse Engineering, Cunxi Yu

Doctoral Dissertations

Despite a considerable progress in verification and abstraction of random and control logic, advances in formal verification of arithmetic designs have been lagging. This can be attributed mostly to the difficulty in an efficient modeling of arithmetic circuits and datapaths without resorting to computationally expensive Boolean methods, such as Binary Decision Diagrams (BDDs) and Boolean Satisfiability (SAT), that require “bit blasting”, i.e., flattening the design to a bit-level netlist. Approaches that rely on computer algebra and Satisfiability Modulo Theories (SMT) methods are either too abstract to handle the bit-level nature of arithmetic designs or require solving computationally expensive decision or …


Energy Efficient Loop Unrolling For Low-Cost Fpgas, Naveen Kumar Dumpala Oct 2017

Energy Efficient Loop Unrolling For Low-Cost Fpgas, Naveen Kumar Dumpala

Masters Theses

Many embedded applications implement block ciphers and sorting and searching algorithms which use multiple loop iterations for computation. These applications often demand low power operation. The power consumption of designs varies with the implementation choices made by designers. The sequential implementation of loop operations consumes minimal area, but latency and clock power are high. Alternatively, loop unrolling causes high glitch power. In this work, we propose a low area overhead approach for unrolling loop iterations that exhibits reduced glitch power. A latch based glitch filter is introduced that reduces the propagation of glitches from one iteration to next. We explore …


Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat Oct 2017

Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat

Masters Theses

Hardware implementations of artificial neural networks (ANNs) have become feasible due to the advent of persistent 2-terminal devices such as memristor, phase change memory, MTJs, etc. Hybrid memristor crossbar/CMOS systems have been studied extensively and demonstrated experimentally. In these circuits, memristors located at each cross point in a crossbar are, however, stacked on top of CMOS circuits using back end of line processing (BOEL), limiting scaling. Each neuron’s functionality is spread across layers of CMOS and memristor crossbar and thus cannot support the required connectivity to implement large-scale multi-layered ANNs.

This work proposes a new fine-grained 3D integrated circuit technology …


Oracle Guided Incremental Sat Solving To Reverse Engineer Camouflaged Circuits, Xiangyu Zhang Oct 2017

Oracle Guided Incremental Sat Solving To Reverse Engineer Camouflaged Circuits, Xiangyu Zhang

Masters Theses

This study comprises two tasks. The first is to implement gate-level circuit camouflage techniques. The second is to implement the Oracle-guided incremental de-camouflage algorithm and apply it to the camouflaged designs.

The circuit camouflage algorithms are implemented in Python, and the Oracle- guided incremental de-camouflage algorithm is implemented in C++. During this study, I evaluate the Oracle-guided de-camouflage tool (Solver, in short) performance by de-obfuscating the ISCAS-85 combinational benchmarks, which are camouflaged by the camouflage algorithms. The results show that Solver is able to efficiently de-obfuscate the ISCAS-85 benchmarks regardless of camouflaging style, and is able to do so 10.5x …


Effective Denial Of Service Attack On Congestion Aware Adaptive Network On Chip, Vijaya Deepak Kadirvel Mar 2017

Effective Denial Of Service Attack On Congestion Aware Adaptive Network On Chip, Vijaya Deepak Kadirvel

Masters Theses

Network-On-Chip (NoC) architecture forms the new design framework in extending single processor to multiprocessor SoC. Similar to other SoCs and systems, NoCs are also susceptible to Denial of Service (DoS) attacks which degrade the performance by limiting the availability of resources to the processing cores. The stability of NoC is maintained by employing hardware monitors to detect illegal/abnormal activity or by congestion aware arbitration to obfuscate and balance the network load. Typical DoS attack model selects a random target resource and injects multiple flooding flits to reduce its functionality. The random DoS attack will not be practically effective on congestion …