Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Biofilm Mediated Calculus Formation In The Urinary Tract, Robert J. C. Mclean, David J. Stickler, J. Curtis Nickel Jan 1996

Biofilm Mediated Calculus Formation In The Urinary Tract, Robert J. C. Mclean, David J. Stickler, J. Curtis Nickel

Cells and Materials

Mineralization and subsequent calculus formation is a common complication of biofilm infections. In the urinary tract, these infected calculi often arise from infections by urease-producing bacteria. Ammonia, liberated by bacterial urease activity, increases urine pH, resulting in the precipitation of Ca and Mg as carbonateapatite {Ca10(PO4,CO3)6(OH,CO3)2} and struvite (NH4MgP04·6H2O). These minerals become entrapped in the organic matrix which surrounds the infecting organisms and ultimately grow into mature calculi. When the causative organisms grow on urinary catheters and stents, the resulting mineralization can …


Some Observations On The Structure Of Encrusting Biofilms Of Proteus Mirabilis On Urethral Catheters, C. Winters, D. J. Stickler, N. S. Howe, T. J. Williams, N. Wilkinson, C. J. Buckley Jan 1995

Some Observations On The Structure Of Encrusting Biofilms Of Proteus Mirabilis On Urethral Catheters, C. Winters, D. J. Stickler, N. S. Howe, T. J. Williams, N. Wilkinson, C. J. Buckley

Cells and Materials

A physical model of the bladder has been used to study the process of urinary catheter encrustation. Techniques have been devised for the preparation of sections through these encrustations in situ on the luminal surfaces of catheters and for mapping the distribution of calcium and magnesium in the biofilms. Transmission electron microscopy on these sections showed struvite-like crystals lying in the matrix and in direct contact with the catheter surface. Calcium phosphate ("bioapatite") was distributed throughout the film and many of these amorphous particles appear to have cells at their cores. Freeze-substituted sections of biofilms also showed electron dense materials …