Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Transport Phenomena

Theses/Dissertations

2019

Institution
Keyword
Publication

Articles 1 - 26 of 26

Full-Text Articles in Engineering

Non-Invasive Detection And Assessment Of Coronary Stenosis From Blood Mean Residence Times., Javad Hashemi Dec 2019

Non-Invasive Detection And Assessment Of Coronary Stenosis From Blood Mean Residence Times., Javad Hashemi

Electronic Theses and Dissertations

Coronary artery stenosis is an abnormal narrowing of a coronary artery caused by an atherosclerotic lesion that reduces lumen space. Fractional flow reserve (FFR) is the gold standard method to determine the severity of coronary stenosis based on the determination of rest and hyperemic pressure fields, but requires an invasive medical procedure. Normal FFR is 1.0 and FFR RT, to account for varying volume and flow rate of individual segments. BloodRT was computed in 100 patients who had undergone the pressure-wire FFR procedure, and a threshold for BloodRT was determined to assess the physiological significance of a stenosis, …


Applications Of Ionic Liquids In Membrane Separation, Mohanad Kamaz Dec 2019

Applications Of Ionic Liquids In Membrane Separation, Mohanad Kamaz

Graduate Theses and Dissertations

Ionic liquids represent an emerging attractive material in membrane technology. The central theme of this doctoral dissertation is to develope novel membranes using ionic liquids. Two different approaches were used to prepare ionic liquid membranes including the immobilization of ionic liquid within the membrane pores or the use of pressure assembly method to deposit a selective ionic liquid layer on the top membrane surface.

In chapter 2, imidazolium ionic liquids with three different alkyl halides were successfully synthesized and used to prepare supported ionic liquid membranes (SILMs). SILMs preraper were tested for aqueous and nonaqueous applications. For nonaqueous applications, the …


Breaking Coastal Hypoxia: Destratification Of Gulf Of Mexico Deadzone To Encourage Oxygen Transport Downwards To Maintain Marine Fauna, Veda Thipparthi Nov 2019

Breaking Coastal Hypoxia: Destratification Of Gulf Of Mexico Deadzone To Encourage Oxygen Transport Downwards To Maintain Marine Fauna, Veda Thipparthi

LSU Master's Theses

As a consequence of seasonal eutrophication and human input, a vast hypoxic area termed The Dead Zone develops every year in the Gulf of Mexico (GOM) during summer along the Louisiana coastline characterized by vertical seawater density-stratification with oxygen concentrations less than 2 mg.l-1 at the seafloor. It poses a threat to bottom-dwelling faunae and their environment which has negative ecological and economic consequences. This project aims to mitigate hypoxia by employing mechanical impellers placed at strategic water depths and locations in the Gulf. Enhanced transport of oxygen results by mixing oxygen-enriched seawater at the surface, downward into the …


A Kinetic And Thermodynamic Model Of Ethylene Dichloride Pyrolysis., Travis J Czechorski Nov 2019

A Kinetic And Thermodynamic Model Of Ethylene Dichloride Pyrolysis., Travis J Czechorski

Electronic Theses and Dissertations

Ethylene dichloride (EDC) is a precursor for the production of vinyl chloride (VCM) which is subsequently polymerized to form polyvinyl chloride (PVC). To convert EDC to VCM, EDC undergoes a pyrolysis process in the absence of oxygen at temperatures exceeding 500C. However, process yields are limited by the uncontrolled production of side-products that can degrade the quality of PVC and poison the reactor. Thus, tight process controls and costly separations guided by heuristics and plant operator experience are used to optimize EDC pyrolysis. To improve the process, I have programed a kinetic model of EDC pyrolysis based upon estimations of …


Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar Oct 2019

Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar

Doctoral Dissertations

Material nanostructures such as nanowires, quantum dots, and nanorings have a wide variety of applications in electronic and photonic devices among numerous others. Assembling uniformly arranged and consistently sized nanostructure patterns on solid material surfaces is a major challenge for nanotechnology. This dissertation focuses on developing predictive models capable of simulation and analysis of such nanopattern formation on bulk material and strained thin film surfaces. Single-layer atomic clusters (islands) of sizes larger than a critical size on crystalline conducting substrates undergo morphological instabilities when driven by an externally applied electric field or thermal gradient. We have conducted a systematic and …


Multiphase Cfd Modeling In Particle-Laden Flows, Zhizhong Ding Aug 2019

Multiphase Cfd Modeling In Particle-Laden Flows, Zhizhong Ding

LSU Doctoral Dissertations

Multiphase modeling is prevalent and useful in solving problems involving multiphase interactions such as fluid and solid. Applications conclude but not limited to fluidized bed, hydraulic conveying, and many others. Modeling techniques with multiple scales can provide various states of details with diverse computational resources used. In this dissertation, two CFD multiphase models are used to disclose interaction details in the particulate system. Two-Fluid Model is used to solve pulsed fluidized bed problem and immersed boundary method based direct numerical method is used to solve particle’s behavior in shear flow. Getting a better understanding of these problems to help to …


Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu Aug 2019

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain, …


A Numerical Simulation Optimizing Droplet Motion Driven By Electrowetting, Jake M. Lesinski Jun 2019

A Numerical Simulation Optimizing Droplet Motion Driven By Electrowetting, Jake M. Lesinski

Master's Theses

A numerical simulation of electrowetting on a dielectric was performed in COMSOL to grant insight on various parameters that play a critical role in system performance. The specific system being simulated was the Open Drop experiment and the parameters being investigated were the applied voltage, contact angle at the advancing triple point, and droplet overlap onto neighboring actuated electrodes. These parameters were investigated with respect to their effect on droplet locomotion performance. This performance was quantified by the droplets velocity and the dielectrophortic (DEP) force’s magnitude; the DEP force was calculated from integration of the Maxwell Stress Tensor, however, the …


Fluid Transport In Porous Media For Engineering Applications, Eric M. Benner May 2019

Fluid Transport In Porous Media For Engineering Applications, Eric M. Benner

Chemical and Biological Engineering ETDs

This doctoral dissertation presents three topics in modeling fluid transport through porous media used in engineering applications. The results provide insights into the design of fuel cell components, catalyst and drug delivery particles, and aluminum- based materials. Analytical and computational methods are utilized for the modeling of the systems of interest. Theoretical analysis of capillary-driven transport in porous media show that both geometric and evaporation effects significantly change the time dependent behavior of liquid imbibition and give a steady state flux into the medium. The evaporation–capillary number is significant in determining the time-dependent behavior of capillary flows in porous media. …


Modeling Of Electrochemical Processes At The Magnesium Anode During Struvite Formation, Tobias Dwyer May 2019

Modeling Of Electrochemical Processes At The Magnesium Anode During Struvite Formation, Tobias Dwyer

Chemical Engineering Undergraduate Honors Theses

This study analyzes the current transients observed during the electrochemical formation of struvite from a solution of ammonium phosphate using a pure magnesium and magnesium alloy electrode. Through converting the chronoamperometric data to chronocoulometric data and fitting the data to various models, the driving mechanisms for struvite nucleation were elucidated. While the pure magnesium anode is controlled by only instantaneous nucleation at the electrode, the AZ31 alloy is nucleation controlled at short times and Cottrell diffusion controlled at long times.


Parameters That Influence The Performance Of Dispersion Barrier Coatings, Randy Raditya May 2019

Parameters That Influence The Performance Of Dispersion Barrier Coatings, Randy Raditya

Electronic Theses and Dissertations

Barrier coating layers are important in many paper grades used in food packaging and have the potential to help reduce our use of plastics in some situations. Barrier layers to produce water proof packaging such as milk or juice cartons or coffee cups are common. Water based dispersion barrier coatings have the potential to be a low-cost alternative to extrusion coated layers. Water borne coatings are reported to be easy to recycle and break down in the environment. However, barrier properties are often less than what is desired and expected for these water borne coatings. The reason for this poor …


Effects Of Ambient And Laser Light On Water Evaporation From The Surface Of Polyurethane Swabs Doped With Surfactant, Collin Campbell May 2019

Effects Of Ambient And Laser Light On Water Evaporation From The Surface Of Polyurethane Swabs Doped With Surfactant, Collin Campbell

Chemical Engineering Undergraduate Honors Theses

Polyurethane swabs are a common instrument for environmental sampling in the food, medical, and forensic fields due to their high recovery of organisms like viruses, spores, and bacteria. For sampling microbes in food and medical facilities, storage of the collected samples occurs under the absence of light to promote growth for more accurate testing. In the forensic fields, microbial growth results in sample contamination so the inhibition of this growth requires the drying of the swabs. This work studies the evaporation rates of water from polyurethane swabs under zero watt incident light, 30 W fluorescent bulb, 50 mW 532 nm …


Chemical And Physical Modification Of Thiol-Ene And Epoxy-Amine Networks For Advanced Control Of Gas Transport And Flame Retardant Behavior, Vivek Vasagar May 2019

Chemical And Physical Modification Of Thiol-Ene And Epoxy-Amine Networks For Advanced Control Of Gas Transport And Flame Retardant Behavior, Vivek Vasagar

Dissertations

Crosslinked polymers are widely used due to its several advantages not limited to high mechanical strength combined with the easy processability. Despite of its popular usage, the fundamental understanding of polymer structure affecting the desired properties is still lacking. This PhD thesis is in two parts, the first part is devoted to the design and developing a basic understanding of structure and chemical composition dependencies of gas transport, whereas in the second part a fundamental relationship between structure to the fire-retardant properties is established.

Membrane based gas separation technique has attracted interest of selective removal of carbon dioxide gas from …


Tactical Missile Performance For Single And Multi-Wire Embedded Propellant Configurations With Discontinuities, Paul B. Wilson Mar 2019

Tactical Missile Performance For Single And Multi-Wire Embedded Propellant Configurations With Discontinuities, Paul B. Wilson

Theses and Dissertations

This research analyzes the performance of a nominal air-to-air tactical missile with varying configurations of wire-embedded end-burning solid propellant grains. Single and multi-wire models are developed to determine if total impulse and range is improved. Discontinuities in the wires are simulated to determine if gaps in the wire will affect overall performance. Five wire materials, seven wire diameters, and nine different break locations are tested. This research demonstrates wire discontinuities have negligible impact on performance and carbon nanotube fibers can theoretically improve total impulse by up to 25% compared to radially burning boost-phase grains while providing similar thrust outputs.


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli Mar 2019

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications. Pore narrowing …


The Investigation Of Surface Barrier During Molecular Transport In Hierarchical Zeolites, Xiaoduo Qi Mar 2019

The Investigation Of Surface Barrier During Molecular Transport In Hierarchical Zeolites, Xiaoduo Qi

Doctoral Dissertations

Hierarchical zeolites with micropore lengths on the order of nanometers have been synthesized with the aim of reducing mass transfer limitation. However, due to large external surface to volume ratios, the mass transport in these materials can be hindered by a secondary rate limitation step imposed on the external surface of the zeolites. This has led to the general phenomenon referred to as “surface barriers”, which cause the enhancement in mass transport being far lower than expected. In order to fully unlock the potential of hierarchical zeolites, it is imperative to fundamentally understand the molecular transport in these new types …


An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel Jan 2019

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel

Nuclear Engineering ETDs

Renewed interest in molten salt reactor technology has brought to light the need for a better understanding of FLiBe corrosion. To this end a flowing FLiBe corrosion test loop was designed to test the flow effects of FLiBe corrosion. The loop consists of a pump, melt tank, and stainless-steel tubing assembly that heats the molten salt to high temperatures and circulates it over test specimens. The experiment has been constructed and has completed initial shakedown testing.

To support the flowing FLiBe experiment, a numerical corrosion model that couples FLiBe electrochemistry, solid metal diffusion, and mass transport was implemented. The model …


Gas Hold-Up Measurements In 0.3 M Diameter Bubble Column: Effect Of Electrolytes, Heber Blanco De Brand Jan 2019

Gas Hold-Up Measurements In 0.3 M Diameter Bubble Column: Effect Of Electrolytes, Heber Blanco De Brand

Dissertations and Theses

The present work reports the axial, radial and temporal gas hold-up profiles in a 0.3 m diameter batch bubble column using a pair of Wire Mesh Sensors and six pressure transducers.


Void Fraction Measurements In Large (0.3 M) Diameter Bubble Column Using Wire Mesh Sensor And Pressure Transducers- Effect Of Sparger, Afolabi Gabriel Ojo Jan 2019

Void Fraction Measurements In Large (0.3 M) Diameter Bubble Column Using Wire Mesh Sensor And Pressure Transducers- Effect Of Sparger, Afolabi Gabriel Ojo

Dissertations and Theses

The importance of the accurate temporal and spatial measurements of the two-phase flow parameters in bubble columns is very well known. The aim of this research work is to report the spatial measurements of the void fraction distribution in a 30 cm diameter cylindrical bubble column using Wire Mesh Sensor (WMS) tomography and Pressure Transducers. Pair of WMS sensors, with a 64×64 wire configuration of each sensor, were installed which are separated by a distance along the axis of the bubble column. Wire Mesh Sensors and PTs Data were collected for time-averaged and transient with a sampling frequency of 1000 …


Synthesis, Functionalization, And Application Of Nanofiltration And Composite Membranes For Selective Separations, Andrew Steven Colburn Jan 2019

Synthesis, Functionalization, And Application Of Nanofiltration And Composite Membranes For Selective Separations, Andrew Steven Colburn

Theses and Dissertations--Chemical and Materials Engineering

Future nanofiltration (NF) membranes used for selective separations of ions and small organic molecules must maintain performance in environments where high concentrations of total dissolved solvents or foulants are present. These challenges can be addressed through the development of composite membranes, as well as the engineering of enhanced surface properties and operating conditions for existing commercial membranes.

In this work, ion transport through commercial thin film composite (TFC) polyamide NF membranes were studied in both lab-prepared salt solutions and industrial wastewater. The dependence of several variables on ion rejection was investigated, including ion radius, ion charge, ionic strength, and temperature. …


Synthesis, Characterization And Applications Of Reduced Graphene Oxide And Composite Membranes For Selective Separations And Removal Of Organic Contaminants, Ashish Aher Jan 2019

Synthesis, Characterization And Applications Of Reduced Graphene Oxide And Composite Membranes For Selective Separations And Removal Of Organic Contaminants, Ashish Aher

Theses and Dissertations--Chemical and Materials Engineering

Among the next generation materials being investigated for membrane development, partially reduced Graphene Oxide (rGO) has received increasing attention from the membrane community. rGO-based nanofiltration membranes have shown promising results in applications such as partial desalination, organic contaminant removal, gas-phase separations, and separations from solvent media. rGO offers a unique platform compared to common polymeric membranes since it can be used for separation applications in both aqueous and organic solvent media. An rGO-based platform could also be utilized to synthesize reactive membranes, giving rGO membranes the additional capability of reactively removing organic contaminants. This research focuses on the synthesis of …


Design Process For The Containment And Manipulation Of Liquids In Microgravity, Chris Meek Jan 2019

Design Process For The Containment And Manipulation Of Liquids In Microgravity, Chris Meek

Theses and Dissertations--Mechanical Engineering

In order to enhance accessibility to microgravity research, the design process for experiments on the ISS must be streamlined and accessible to all scientific disciplines, not just aerospace engineers. Thus, a general design and analysis toolbox with accompanying best practices manual for microgravity liquid containment is proposed. The work presented in this thesis improves the design process by introducing a modular liquid tank design which can be filled, drained, or act as a passive liquid-gas separation device. It can also be pressurized, and used for aerosol spray. This tank can be modified to meet the design requirements of various experimental …


Air Ingress And Heat-Driven Flow Relaminarization In A Very High Temperature Reactor (Vhtr), Apoorva Rudra Jan 2019

Air Ingress And Heat-Driven Flow Relaminarization In A Very High Temperature Reactor (Vhtr), Apoorva Rudra

Dissertations and Theses

Very High Temperature Reactors (VHTRs) are one of six Generation IV reactors that have been proposed for DOE’s Next Generation Nuclear Plant. In addition to using gaseous coolants, VHTRs also display benefits of passive safety systems including intra-core natural circulation for heat removal in accident scenarios. However, a number of substantial engineering challenges are expected in VHTRs, and due to the high temperatures of the coolant involved, material behavior in various components needs to be better understood. Our work focuses mainly on two key phenomena that could lead to localized hot spots in the VHTR reactor core if not addressed …


Intensification Of Gas Absorption In A Downward Flow Microbubble Bioreactor, Manizheh Ansari Jan 2019

Intensification Of Gas Absorption In A Downward Flow Microbubble Bioreactor, Manizheh Ansari

Dissertations and Theses

Bioreactors are of interest for value-upgrading of stranded or waste industrial gases, such as CO, CH4, or syngas. Process economics requires reduction of reactor cost and size while maintaining high production rate via rapid delivery of gas feedstock to the liquid phase which in turn requires a high volumetric mass transfer rate (). One strategy to achieve this goal is to increase interfacial area density, a, to >3000 m2 m-3, while minimizing use of energy. Here we show a novel reactor column design that uses a micro-jet array to break feedstock at ambient pressure …


Capillary Forces In Partially Saturated Thin Fibrous Media, Ali Moghadam Jan 2019

Capillary Forces In Partially Saturated Thin Fibrous Media, Ali Moghadam

Theses and Dissertations

Capillarity is often exploited in self-cleaning, drag reducing and fluid absorption/storage (sanitary products) purposes just to name a few. Formulating the underlying physics of capillarity helps future design and development of optimized structures. This work reports on developing computational models to quantify the capillary pressure and capillary forces on the fibrous surfaces. To this end, the current study utilizes a novel mass-spring-damper approach to incorporate the mechanical properties of the fibers in generating virtual fibrous structures that can best represent fibrous membranes. Such virtual fibrous structures are then subjected to a pressure estimation model, developed for the first time in …


Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu Jan 2019

Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu

Williams Honors College, Honors Research Projects

This work investigates the use of two different polyols, xylitol (Xyl) and erythritol (Ery), in conjunction with boron nitride (BN) aerogels, for the purpose of creating thermally conductive composites. While the BN filler in Xyl composites achieved a high anisotropic thermal conductivity of up to 4.53 W/m-K at 18.2 weight percent filler loading, they do not exhibit good phase-change material qualities due to a low solidification enthalpy even at low cooling rates. Alternatively, the BN-Ery composites have shown promising results with a solidification enthalpy of 225.14 J/g and a melting enthalpy of 385.84 J/g at a heat rate of 5 …