Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms

Theses/Dissertations

2020

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Electro-Optic Satellite Constellation Design Using Multi-Objective Genetic Algorithm, Yasin Tamer Dec 2020

Electro-Optic Satellite Constellation Design Using Multi-Objective Genetic Algorithm, Yasin Tamer

Theses and Dissertations

Satellite constellation design is a complex, highly constrained, and multidisciplinary problem. Unless optimization tools are used, tradeoffs must be conducted at the subsystem level resulting in feasible, but not necessarily optimal, system designs. As satellite technology advances, new methods to optimize the system objectives are developed. This study is based on the development of a representative regional remote sensing constellation design. This thesis analyses the design process of an electrooptic satellite constellation with regional coverage considerations using system-level optimization tools. A multi objective genetic algorithm method is used to optimize the constellation design by utilizing MATLAB and STK integration. Cost, …


Improving Closely Spaced Dim Object Detection Through Improved Multiframe Blind Deconvolution, Ronald M. Aung Sep 2020

Improving Closely Spaced Dim Object Detection Through Improved Multiframe Blind Deconvolution, Ronald M. Aung

Theses and Dissertations

This dissertation focuses on improving the ability to detect dim stellar objects that are in close proximity to a bright one, through statistical image processing using short exposure images. The goal is to improve the space domain awareness capabilities with the existing infrastructure. Two new algorithms are developed. The first one is through the Neighborhood System Blind Deconvolution where the data functions are separated into the bright object, the neighborhood system, and the background functions. The second one is through the Dimension Reduction Blind Deconvolution, where the object function is represented by the product of two matrices. Both are designed …


A 3d Image-Guided System To Improve Myocardial Revascularization Decision-Making For Patients With Coronary Artery Disease, Haipeng Tang Aug 2020

A 3d Image-Guided System To Improve Myocardial Revascularization Decision-Making For Patients With Coronary Artery Disease, Haipeng Tang

Dissertations

OBJECTIVES. Coronary artery disease (CAD) is the most common type of heart disease and kills over 360,000 people a year in the United States. Myocardial revascularization (MR) is a standard interventional treatment for patients with stable CAD. Fluoroscopy angiography is real-time anatomical imaging and routinely used to guide MR by visually estimating the percent stenosis of coronary arteries. However, a lot of patients do not benefit from the anatomical information-guided MR without functional testing. Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a widely used functional testing for CAD evaluation but limits to the absence of anatomical information. …


Investigating Single Precision Floating General Matrix Multiply In Heterogeneous Hardware, Steven Harris Aug 2020

Investigating Single Precision Floating General Matrix Multiply In Heterogeneous Hardware, Steven Harris

McKelvey School of Engineering Theses & Dissertations

The fundamental operation of matrix multiplication is ubiquitous across a myriad of disciplines. Yet, the identification of new optimizations for matrix multiplication remains relevant for emerging hardware architectures and heterogeneous systems. Frameworks such as OpenCL enable computation orchestration on existing systems, and its availability using the Intel High Level Synthesis compiler allows users to architect new designs for reconfigurable hardware using C/C++. Using the HARPv2 as a vehicle for exploration, we investigate the utility of several of the most notable matrix multiplication optimizations to better understand the performance portability of OpenCL and the implications for such optimizations on this and …


Data-Driven Investment Decisions In P2p Lending: Strategies Of Integrating Credit Scoring And Profit Scoring, Yan Wang Apr 2020

Data-Driven Investment Decisions In P2p Lending: Strategies Of Integrating Credit Scoring And Profit Scoring, Yan Wang

Doctor of Data Science and Analytics Dissertations

In this dissertation, we develop and discuss several loan evaluation methods to guide the investment decisions for peer-to-peer (P2P) lending. In evaluating loans, credit scoring and profit scoring are the two widely utilized approaches. Credit scoring aims at minimizing the risk while profit scoring aims at maximizing the profit. This dissertation addresses the strengths and weaknesses of each scoring method by integrating them in various ways in order to provide the optimal investment suggestions for different investors. Before developing the methods for loan evaluation at the individual level, we applied the state-of-the-art method called the Long Short Term Memory (LSTM) …


Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann Apr 2020

Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann

Mathematics & Statistics ETDs

This thesis uses a geometric approach to derive and solve nonlinear least squares minimization problems to geolocate a signal source in three dimensions using time differences of arrival at multiple sensor locations. There is no restriction on the maximum number of sensors used. Residual errors reach the numerical limits of machine precision. Symmetric sensor orientations are found that prevent closed form solutions of source locations lying within the null space. Maximum uncertainties in relative sensor positions and time difference of arrivals, required to locate a source within a maximum specified error, are found from these results. Examples illustrate potential requirements …


Neural Network Pruning For Ecg Arrhythmia Classification, Isaac E. Labarge Apr 2020

Neural Network Pruning For Ecg Arrhythmia Classification, Isaac E. Labarge

Master's Theses

Convolutional Neural Networks (CNNs) are a widely accepted means of solving complex classification and detection problems in imaging and speech. However, problem complexity often leads to considerable increases in computation and parameter storage costs. Many successful attempts have been made in effectively reducing these overheads by pruning and compressing large CNNs with only a slight decline in model accuracy. In this study, two pruning methods are implemented and compared on the CIFAR-10 database and an ECG arrhythmia classification task. Each pruning method employs a pruning phase interleaved with a finetuning phase. It is shown that when performing the scale-factor pruning …


Comparison Of Visual Simultaneous Localization And Mapping Methods For Fixed-Wing Aircraft Using Slambench2, Patrick R. Latcham Mar 2020

Comparison Of Visual Simultaneous Localization And Mapping Methods For Fixed-Wing Aircraft Using Slambench2, Patrick R. Latcham

Theses and Dissertations

Visual Simultaneous Localization and Mapping (VSLAM) algorithms have evolved rapidly in the last few years, however there has been little research evaluating current algorithm's effectiveness and limitations when applied to tracking the position of a fixed-wing aerial vehicle. This research looks to evaluate current monocular VSLAM algorithms' performance on aerial vehicle datasets using the SLAMBench2 benchmarking suite. The algorithms tested are MonoSLAM, PTAM, OKVIS, LSDSLAM, ORB-SLAM2, and SVO, all of which are built into the SLAMBench2 software. The algorithms' performance is evaluated using simulated datasets generated in the AftrBurner Engine. The datasets were designed to test the quality of each …


Meta Learning Recommendation System For Classification, Clarence O. Williams Iii Mar 2020

Meta Learning Recommendation System For Classification, Clarence O. Williams Iii

Theses and Dissertations

A data driven approach is an emerging paradigm for the handling of analytic problems. In this paradigm the mantra is to let the data speak freely. However, when using machine learning algorithms, the data does not naturally reveal the best or even a good approach for algorithm choice. One method to let the algorithm reveal itself is through the use of Meta Learning, which uses the features of a dataset to determine a useful model to represent the entire dataset. This research proposes an improvement on the meta-model recommendation system by adding classification problems to the candidate problem space with …


Deep Siamese Neural Networks For Facial Expression Recognition In The Wild, Wassan Hayale Jan 2020

Deep Siamese Neural Networks For Facial Expression Recognition In The Wild, Wassan Hayale

Electronic Theses and Dissertations

The variation of facial images in the wild conditions due to head pose, face illumination, and occlusion can significantly affect the Facial Expression Recognition (FER) performance. Moreover, between subject variation introduced by age, gender, ethnic backgrounds, and identity can also influence the FER performance. This Ph.D. dissertation presents a novel algorithm for end-to-end facial expression recognition, valence and arousal estimation, and visual object matching based on deep Siamese Neural Networks to handle the extreme variation that exists in a facial dataset. In our main Siamese Neural Networks for facial expression recognition, the first network represents the classification framework, where we …


Satellite Constellation Deployment And Management, Joseph Ryan Kopacz Jan 2020

Satellite Constellation Deployment And Management, Joseph Ryan Kopacz

Electronic Theses and Dissertations

This paper will review results and discuss a new method to address the deployment and management of a satellite constellation. The first two chapters will explorer the use of small satellites, and some of the advances in technology that have enabled small spacecraft to maintain modern performance requirements in incredibly small packages.

The third chapter will address the multiple-objective optimization problem for a global persistent coverage constellation of communications spacecraft in Low Earth Orbit. A genetic algorithm was implemented in MATLAB to explore the design space – 288 trillion possibilities – utilizing the Satellite Tool Kit (STK) software developers kit. …


Facial Action Unit Detection With Deep Convolutional Neural Networks, Siddhesh Padwal Jan 2020

Facial Action Unit Detection With Deep Convolutional Neural Networks, Siddhesh Padwal

Electronic Theses and Dissertations

The facial features are the most important tool to understand an individual's state of mind. Automated recognition of facial expressions and particularly Facial Action Units defined by Facial Action Coding System (FACS) is challenging research problem in the field of computer vision and machine learning. Researchers are working on deep learning algorithms to improve state of the art in the area. Automated recognition of facial action units has man applications ranging from developmental psychology to human robot interface design where companies are using this technology to improve their consumer devices (like unlocking phone) and for entertainment like FaceApp. Recent studies …


V-Slam And Sensor Fusion For Ground Robots, Ejup Hoxha Jan 2020

V-Slam And Sensor Fusion For Ground Robots, Ejup Hoxha

Dissertations and Theses

In underground, underwater and indoor environments, a robot has to rely solely on its on-board sensors to sense and understand its surroundings. This is the main reason why SLAM gained the popularity it has today. In recent years, we have seen excellent improvement on accuracy of localization using cameras and combinations of different sensors, especially camera-IMU (VIO) fusion. Incorporating more sensors leads to improvement of accuracy,but also robustness of SLAM. However, while testing SLAM in our ground robots, we have seen a decrease in performance quality when using the same algorithms on flying vehicles.We have an additional sensor for ground …


Landing Throttleable Hybrid Rockets With Hierarchical Reinforcement Learning In A Simulated Environment, Francesco Alessandro Stefano Mikulis-Borsoi Jan 2020

Landing Throttleable Hybrid Rockets With Hierarchical Reinforcement Learning In A Simulated Environment, Francesco Alessandro Stefano Mikulis-Borsoi

Honors Theses and Capstones

In this paper, I develop a hierarchical Markov Decision Process (MDP) structure for completing the task of vertical rocket landing. I start by covering the background of this problem, and formally defining its constraints. In order to reduce mistakes while formulating different MDPs, I define and develop the criteria for a standardized MDP definition format. I then decompose the problem into several sub-problems of vertical landing, namely velocity control and vertical stability control. By exploiting MDP coupling and symmetrical properties, I am able to significantly reduce the size of the state space compared to a unified MDP formulation. This paper …


Leveraging Peer-To-Peer Energy Sharing For Resource Optimization In Mobile Social Networks, Aashish Dhungana Jan 2020

Leveraging Peer-To-Peer Energy Sharing For Resource Optimization In Mobile Social Networks, Aashish Dhungana

Theses and Dissertations

Mobile Opportunistic Networks (MSNs) enable the interaction of mobile users in the vicinity through various short-range wireless communication technologies (e.g., Bluetooth, WiFi) and let them discover and exchange information directly or in ad hoc manner. Despite their promise to enable many exciting applications, limited battery capacity of mobile devices has become the biggest impediment to these appli- cations. The recent breakthroughs in the areas of wireless power transfer (WPT) and rechargeable lithium batteries promise the use of peer-to-peer (P2P) energy sharing (i.e., the transfer of energy from the battery of one member of the mobile network to the battery of …