Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Engineering

Adaboost‑Based Security Level Classifcation Of Mobile Intelligent Terminals, Feng Wang, Houbing Song, Dingde Jiang, Hong Wen Sep 2019

Adaboost‑Based Security Level Classifcation Of Mobile Intelligent Terminals, Feng Wang, Houbing Song, Dingde Jiang, Hong Wen

Houbing Song

With the rapid development of Internet of Things, massive mobile intelligent terminals are ready to access edge servers for real-time data calculation and interaction. However, the risk of private data leakage follows simultaneously. As the administrator of all intelligent terminals in a region, the edge server needs to clarify the ability of the managed intelligent terminals to defend against malicious attacks. Therefore, the security level classification for mobile intelligent terminals before accessing the network is indispensable. In this paper, we firstly propose a safety assessment method to detect the weakness of mobile intelligent terminals. Secondly, we match the evaluation results …


Signal Flow Graph Approach To Efficient Dst I-Iv Algorithms, Sirani M. Perera Oct 2018

Signal Flow Graph Approach To Efficient Dst I-Iv Algorithms, Sirani M. Perera

Sirani Mututhanthrige Perera

In this paper, fast and efficient discrete sine transformation (DST) algorithms are presented based on the factorization of sparse, scaled orthogonal, rotation, rotation-reflection, and butterfly matrices. These algorithms are completely recursive and solely based on DST I-IV. The presented algorithms have low arithmetic cost compared to the known fast DST algorithms. Furthermore, the language of signal flow graph representation of digital structures is used to describe these efficient and recursive DST algorithms having (n􀀀1) points signal flow graph for DST-I and n points signal flow graphs for DST II-IV.


Randomized Routing On Fat-Trees, Ronald I. Greenberg, Charles E. Leiserson Jan 2018

Randomized Routing On Fat-Trees, Ronald I. Greenberg, Charles E. Leiserson

Ronald Greenberg

Fat-trees are a class of routing networks for hardware-efficient parallel computation. This paper presents a randomized algorithm for routing messages on a fat-tree. The quality of the algorithm is measured in terms of the load factor of a set of messages to be routed, which is a lower bound on the time required to deliver the messages. We show that if a set of messages has load factor lambda on a fat-tree with n processors, the number of delivery cycles (routing attempts) that the algorithm requires is O(lambda + lg n lg lg n) with probability 1-O(1/n). The best previous …


The Fat-Pyramid And Universal Parallel Computation Independent Of Wire Delay, Ronald I. Greenberg Jan 2018

The Fat-Pyramid And Universal Parallel Computation Independent Of Wire Delay, Ronald I. Greenberg

Ronald Greenberg

This paper shows that a fat-pyramid of area Θ(A) requires only O(log A) slowdown to simulate any competing network of area A under very general conditions. The result holds regardless of the processor size (amount of attached memory) and number of processors in the competing networks as long as the limitation on total area is met. Furthermore, the result is valid regardless of the relationship between wire length and wire delay. We especially focus on elimination of the common simplifying assumption that unit time suffices to traverse a wire regardless of its length, since the assumption becomes more and more …


Randomized Routing On Fat-Trees, Ronald I. Greenberg Jan 2018

Randomized Routing On Fat-Trees, Ronald I. Greenberg

Ronald Greenberg

Fat-trees are a class of routing networks for hardware-efficient parallel computation. This paper presents a randomized algorithm for routing messages on a fat-tree. The quality of the algorithm is measured in terms of the load factor of a set of messages to be routed, which is a lower bound on the time required to deliver the messages. We show that if a set of messages has load factor lambda on a fat-tree with n processors, the number of delivery cycles (routing attempts) that the algorithm requires is O(lambda+lgnlglgn) with probability 1-O(1/ …


Universal Wormhole Routing, Ronald I. Greenberg, Hyeong-Cheol Oh Jan 2018

Universal Wormhole Routing, Ronald I. Greenberg, Hyeong-Cheol Oh

Ronald Greenberg

In this paper, we examine the wormhole routing problem in terms of the “congestion” c and “dilation” d for a set of packet paths. We show, with mild restrictions, that there is a simple randomized algorithm for routing any set of P packets in O(cdη+cLηlogP) time with high probability, where L is the number of flits in a packet, and η=min{d,L}; only a constant number of flits are stored in each queue at any time. Using this result, we show that a fat-tree network of area Θ(A) can simulate wormhole routing on any network of comparable area with O(log^3 A) …


Single-Layer Channel Routing And Placement With Single-Sided Nets, Ronald I. Greenberg, Jau-Der Shih Jan 2018

Single-Layer Channel Routing And Placement With Single-Sided Nets, Ronald I. Greenberg, Jau-Der Shih

Ronald Greenberg

This paper considers the optimal offset, feasible offset, and optimal placement problems for a more general form of single-layer VLSI channel routing than has usually been considered in the past. Most prior works require that every net has exactly one terminal on each side of the channel. As long as only one side of the channel contains multiple terminals of the same net, we provide linear-time solutions to all three problems. Such results are implausible if the placement of terminals is entirely unrestricted; in fact, the size of the output for the feasible offset problem may be Ω(n^2). The linear-time …


On The Difficulty Of Manhattan Channel Routing, Ronald I. Greenberg, Joseph Jaja, Sridhar Krishnamurthy Jan 2018

On The Difficulty Of Manhattan Channel Routing, Ronald I. Greenberg, Joseph Jaja, Sridhar Krishnamurthy

Ronald Greenberg

We show that channel routing in the Manhattan model remains difficult even when all nets are single-sided. Given a set of n single-sided nets, we consider the problem of determining the minimum number of tracks required to obtain a dogleg-free routing. In addition to showing that the decision version of the problem isNP-complete, we show that there are problems requiring at least d+Omega(sqrt(n)) tracks, where d is the density. This existential lower bound does not follow from any of the known lower bounds in the literature.


On The Area Of Hypercube Layouts, Ronald I. Greenberg, Lee Guan Jan 2018

On The Area Of Hypercube Layouts, Ronald I. Greenberg, Lee Guan

Ronald Greenberg

This paper precisely analyzes the wire density and required area in standard styles for the hypercube. It shows that the most natural, regular layout of a hypercube of N^2 nodes in the plane, in a NxN grid arrangement, uses floor(2N/3)+1 horizontal wiring tracks for each row of nodes. (In the process, we see that the number of tracks per row can be reduced by 1 with a less regular design, as can also be seen from an independent argument of Bezrukov et al.) This paper also gives a simple formula for the wire density at any cut position and a …


Minimizing Channel Density With Movable Terminals, Ronald I. Greenberg, Jau-Der Shih Jan 2018

Minimizing Channel Density With Movable Terminals, Ronald I. Greenberg, Jau-Der Shih

Ronald Greenberg

We give algorithms to minimize density for channels with terminals that are movable subject to certain constraints. The main cases considered are channels with linear order constraints, channels with linear order constraints and separation constraints, channels with movable modules containing fixed terminals, and channels with movable modules and terminals. In each case, previous results for running time and space are improved by a factor of L/lg n and L , respectively, where L is the channel length and n is the number of terminals.


Minimizing Channel Density With Movable Terminals, Ronald I. Greenberg, Jau-Der Shih Jan 2018

Minimizing Channel Density With Movable Terminals, Ronald I. Greenberg, Jau-Der Shih

Ronald Greenberg

We give algorithms to minimize density for VLSI channel routing problems with terminals that are movable subject to certain constraints. The main cases considered are channels with linear order constraints, channels with linear order constraints and separation constraints, channels with movable modules containing fixed terminals, and channels with movable modules and terminals. In each case, we improve previous results for running time and space by a factor of L/\lgn and L, respectively, where L is the channel length, and n is the number of terminals.


Parallel Algorithms For Single-Layer Channel Routing, Ronald I. Greenberg, Shih-Chuan Hung, Jau-Der Shih Jan 2018

Parallel Algorithms For Single-Layer Channel Routing, Ronald I. Greenberg, Shih-Chuan Hung, Jau-Der Shih

Ronald Greenberg

We provide efficient parallel algorithms for the minimum separation, offset range, and optimal offset problems for single-layer channel routing. We consider all the variations of these problems that have linear-time sequential solutions rather than limiting attention to the ``river-routing'' context, where single-sided connections are disallowed. For the minimum separation problem, we obtain O(lgN) time on a CREW PRAM or O(lgN/lglgN) time on a CRCW PRAM, both with optimal work (processor-time product) of O(N), where N is the number of terminals. For the offset range problem, we obtain the same time and processor bounds as long as only one side of …


Parallel Algorithms For Single-Layer Channel Routing, Ronald I. Greenberg, Shih-Chuan Hung, Jau-Der Shih Jan 2018

Parallel Algorithms For Single-Layer Channel Routing, Ronald I. Greenberg, Shih-Chuan Hung, Jau-Der Shih

Ronald Greenberg

We provide efficient parallel algorithms for the minimum separation, offset range, and optimal offset problems for single-layer channel routing. We consider all the variations of these problems that are known to have linear- time sequential solutions rather than limiting attention to the "river-routing" context, where single-sided connections are disallowed. For the minimum separation problem, we obtain O(lgN) time on a CREW PRAM or O(lgN / lglgN) time on a (common) CRCW PRAM, both with optimal work (processor- time product) of O(N), where N is the number of terminals. For the offset range problem, we obtain the same time and processor …


Feasible Offset And Optimal Offset For Single-Layer Channel Routing, Ronald I. Greenberg, Jau-Der Shih Jan 2018

Feasible Offset And Optimal Offset For Single-Layer Channel Routing, Ronald I. Greenberg, Jau-Der Shih

Ronald Greenberg

The paper provides an efficient method to find all feasible offsets for a given separation in a VLSI channel routing problem in one layer. The prior literature considers this task only for problems with no single-sided nets. When single-sided nets are included, the worst-case solution time increases from Theta(n) to Omega(n^2), where n is the number of nets. But, if the number of columns c is O(n), one can solve the problem in time O(n^{1.5}lg n ), which improves upon a `naive' O(cn) approach. As a corollary of this result, the same time bound suffices to find the optimal offset …


Lower Bounds On The Area Of Finite-State Machines, M. J. Foster, Ronald I. Greenberg Jan 2018

Lower Bounds On The Area Of Finite-State Machines, M. J. Foster, Ronald I. Greenberg

Ronald Greenberg

There are certain straightforward algorithms for laying out finite-state machines. This paper shows that these algorithm are optimal in the worst case for machines with fixed alphabets. That is, for any s and k, there is a deterministic finite-state machine with s states and k symbols such that any layout algorithm requires Ω(ks log s) area to lay out its realization. Similarly, any layout algorithm requires Ω(ks^2) area in the worst case for nondeterministic finite-state machines with s states and k symbols.


Efficient Multi-Layer Channel Routing, Ronald I. Greenberg Jan 2018

Efficient Multi-Layer Channel Routing, Ronald I. Greenberg

Ronald Greenberg

No abstract provided.


Finding A Maximum-Denisty Planar Subset Of A Set Of Nets In A Channel, Ronald I. Greenberg, Jau-Der Shih Jan 2018

Finding A Maximum-Denisty Planar Subset Of A Set Of Nets In A Channel, Ronald I. Greenberg, Jau-Der Shih

Ronald Greenberg

We present efficient algorithms to find a maximum-density planar subset of n 2-pin nets in a channel. The simplest approach is to make repeated usage of Supowit's dynamic programming algorithm for finding a maximum-size planar subset, which leads to O(n^3) time to find a maximum-density planar subset. But we also provide an algorithm whose running time is dependent on other problem parameters and is often more efficient. A simple bound on the running time of this algorithm is O(nlgn+n(t+1)w), where t is the number of two-sided nets, and w is the number of nets in the output. Though the worst-case …


Efficient Interconnection Schemes For Vlsi And Parallel Computation, Ronald I. Greenberg Jan 2018

Efficient Interconnection Schemes For Vlsi And Parallel Computation, Ronald I. Greenberg

Ronald Greenberg

This thesis is primarily concerned with two problems of interconnecting components in VLSI technologies. In the first case, the goal is to construct efficient interconnection networks for general-purpose parallel computers. The second problem is a more specialized problem in the design of VLSI chips, namely multilayer channel routing. In addition, a final part of this thesis provides lower bounds on the area required for VLSI implementations of finite-state machines. This thesis shows that networks based on Leiserson's fat-tree architecture are nearly as good as any network built in a comparable amount of physical space. It shows that these "universal" networks …


An Improved Analytical Model For Wormhole Routed Networks With Application To Butterfly Fat-Trees, Ronald I. Greenberg, Lee Guan Jan 2018

An Improved Analytical Model For Wormhole Routed Networks With Application To Butterfly Fat-Trees, Ronald I. Greenberg, Lee Guan

Ronald Greenberg

A performance model for wormhole routed interconnection networks is presented and applied to the butterfly fat-tree network. Experimental results agree very closely over a wide range of load rate. Novel aspects of the model, leading to accurate and simple performance predictions, include (1) use of multiple-server queues, and (2) a general method of correcting queuing results based on Poisson arrivals to apply to wormhole routing. These ideas can also be applied to other networks.


State Preserving Extreme Learning Machine For Face Recognition, Md. Zahangir Alom, Paheding Sidike, Vijayan K. Asari, Tarek M. Taha Oct 2016

State Preserving Extreme Learning Machine For Face Recognition, Md. Zahangir Alom, Paheding Sidike, Vijayan K. Asari, Tarek M. Taha

Vijayan K. Asari

Extreme Learning Machine (ELM) has been introduced as a new algorithm for training single hidden layer feed-forward neural networks (SLFNs) instead of the classical gradient-based algorithms. Based on the consistency property of data, which enforce similar samples to share similar properties, ELM is a biologically inspired learning algorithm with SLFNs that learns much faster with good generalization and performs well in classification applications. However, the random generation of the weight matrix in current ELM based techniques leads to the possibility of unstable outputs in the learning and testing phases. Therefore, we present a novel approach for computing the weight matrix …


Efficient Thermal Image Segmentation Through Integration Of Nonlinear Enhancement With Unsupervised Active Contour Model, Fatema Albalooshi, Evan Krieger, Paheding Sidike, Vijayan K. Asari Oct 2016

Efficient Thermal Image Segmentation Through Integration Of Nonlinear Enhancement With Unsupervised Active Contour Model, Fatema Albalooshi, Evan Krieger, Paheding Sidike, Vijayan K. Asari

Vijayan K. Asari

Thermal images are exploited in many areas of pattern recognition applications. Infrared thermal image segmentation can be used for object detection by extracting regions of abnormal temperatures. However, the lack of texture and color information, low signal-to-noise ratio, and blurring effect of thermal images make segmenting infrared heat patterns a challenging task. Furthermore, many segmentation methods that are used in visible imagery may not be suitable for segmenting thermal imagery mainly due to their dissimilar intensity distributions. Thus, a new method is proposed to improve the performance of image segmentation in thermal imagery. The proposed scheme efficiently utilizes nonlinear intensity …


Gaussian Weighted Neighborhood Connectivity Of Nonlinear Line Attractor For Learning Complex Manifolds, Theus H. Aspiras, Vijayan K. Asari, Wesam Sakla Oct 2016

Gaussian Weighted Neighborhood Connectivity Of Nonlinear Line Attractor For Learning Complex Manifolds, Theus H. Aspiras, Vijayan K. Asari, Wesam Sakla

Vijayan K. Asari

The human brain has the capability to process high quantities of data quickly for detection and recognition tasks. These tasks are made simpler by the understanding of data, which intentionally removes redundancies found in higher dimensional data and maps the data onto a lower dimensional space. The brain then encodes manifolds created in these spaces, which reveal a specific state of the system. We propose to use a recurrent neural network, the nonlinear line attractor (NLA) network, for the encoding of these manifolds as specific states, which will draw untrained data towards one of the specific states that the NLA …


Implementing And Testing A Novel Chaotic Cryptosystem, Samuel Jackson, Scott Kerlin, Jeremy Straub Oct 2015

Implementing And Testing A Novel Chaotic Cryptosystem, Samuel Jackson, Scott Kerlin, Jeremy Straub

Jeremy Straub

Cryptography in the domain of small satellites is a relatively new area of research. Compared to typical desktop computers, small satellites have limited bandwidth, processing power, and battery power. Many of the current encryption schemes were developed for desktop computers and servers, and as such may be unsuitable for small satellites. In addition, most cryptographic research in the domain of small satellites focuses on hardware solutions, which can be problematic given the limited space requirements of small satellites.

This paper investigates potential software solutions that could be used to encrypt and decrypt data on small satellites and other devices with …


Budgeted Personalized Incentive Approaches For Smoothing Congestion In Resource Networks, Pradeep Varakantham, Na Fu, William Yeoh, Shih-Fen Cheng, Hoong Chuin Lau Jun 2014

Budgeted Personalized Incentive Approaches For Smoothing Congestion In Resource Networks, Pradeep Varakantham, Na Fu, William Yeoh, Shih-Fen Cheng, Hoong Chuin Lau

Shih-Fen CHENG

Congestion occurs when there is competition for resources by sel sh agents. In this paper, we are concerned with smoothing out congestion in a network of resources by using personalized well-timed in- centives that are subject to budget constraints. To that end, we provide: (i) a mathematical formulation that computes equilibrium for the re- source sharing congestion game with incentives and budget constraints; (ii) an integrated approach that scales to larger problems by exploiting the factored network structure and approximating the attained equilib- rium; (iii) an iterative best response algorithm for solving the uncon- strained version (no budget) of the …


Notes On Equilibria In Symmetric Games, Shih-Fen Cheng, Daniel M. Reeves, Yevgeniy Vorobeychik, Michael P. Wellman May 2013

Notes On Equilibria In Symmetric Games, Shih-Fen Cheng, Daniel M. Reeves, Yevgeniy Vorobeychik, Michael P. Wellman

Shih-Fen CHENG

In a symmetric game, every player is identical with respect to the game rules. We show that a symmetric 2strategy game must have a pure-strategy Nash equilibrium. We also discuss Nash’s original paper and its generalized notion of symmetry in games. As a special case of Nash’s theorem, any finite symmetric game has a symmetric Nash equilibrium. Furthermore, symmetric infinite games with compact, convex strategy spaces and continuous, quasiconcave utility functions have symmetric pure-strategy Nash equilibria. Finally, we discuss how to exploit symmetry for more efficient methods of finding Nash equilibria.


Heuristic Algorithms For Balanced Multi-Way Number Partitioning, Jilian Zhang, Kyriakos Mouratidis, Hwee Hwa Pang Jul 2012

Heuristic Algorithms For Balanced Multi-Way Number Partitioning, Jilian Zhang, Kyriakos Mouratidis, Hwee Hwa Pang

Kyriakos MOURATIDIS

Balanced multi-way number partitioning (BMNP) seeks to split a collection of numbers into subsets with (roughly) the same cardinality and subset sum. The problem is NP-hard, and there are several exact and approximate algorithms for it. However, existing exact algorithms solve only the simpler, balanced two-way number partitioning variant, whereas the most effective approximate algorithm, BLDM, may produce widely varying subset sums. In this paper, we introduce the LRM algorithm that lowers the expected spread in subset sums to one third that of BLDM for uniformly distributed numbers and odd subset cardinalities. We also propose Meld, a novel strategy for …


A Parameterized Stereo Vision Core For Fpgas, Mark Chang, Stephen Longfield Jul 2012

A Parameterized Stereo Vision Core For Fpgas, Mark Chang, Stephen Longfield

Mark L. Chang

We present a parameterized stereo vision core suitable for a wide range of FPGA targets and stereo vision applications. By enabling easy tuning of algorithm parameters, our system allows for rapid exploration of the design space and simpler implementation of high-performance stereo vision systems. This implementation utilizes the census transform algorithm to calculate depth information from a pair of images delivered from a simulated stereo camera pair. This work advances our previous work through implementation improvements, a stereo camera pair simulation framework, and a scalable stereo vision core.


Precis: A Usercentric Word-Length Optimization Tool, Mark Chang, Scott Hauck Jul 2012

Precis: A Usercentric Word-Length Optimization Tool, Mark Chang, Scott Hauck

Mark L. Chang

Translating an algorithm designed for a general-purpose processor into an algorithm optimized for custom logic requires extensive knowledge of the algorithm and the target hardware. Precis lets designers analyze the precision requirements of algorithms specified in Matlab. The design time tool combines simulation, user input, and program analysis to help designers focus their manual precision optimization efforts.


Low-Cost Stereo Vision On An Fpga, Chris A. Murphy, Daniel Lindquist, Ann Marie Rynning, Thomas Cecil, Sarah Leavitt, Mark L. Chang Jul 2012

Low-Cost Stereo Vision On An Fpga, Chris A. Murphy, Daniel Lindquist, Ann Marie Rynning, Thomas Cecil, Sarah Leavitt, Mark L. Chang

Mark L. Chang

We present a low-cost stereo vision implementation suitable for use in autonomous vehicle applications and designed with agricultural applications in mind. This implementation utilizes the Census transform algorithm to calculate depth maps from a stereo pair of automotive-grade CMOS cameras. The final prototype utilizes commodity hardware, including a Xilinx Spartan-3 FPGA, to process 320times240 pixel images at greater than 150 frames per second and deliver them via a USB 2.0 interface.


Interactionless Calendar-Based Training For 802.11 Localization, Mark Chang, Andrew J. Barry, Noah L. Tye Jul 2012

Interactionless Calendar-Based Training For 802.11 Localization, Mark Chang, Andrew J. Barry, Noah L. Tye

Mark L. Chang

This paper presents our work in solving one of the weakest links in 802.11-based indoor-localization: the training of ground-truth received signal strength data. While crowdsourcing this information has been demonstrated to be a viable alternative to the time consuming and accuracy-limited process of manual training, one of the chief drawbacks is the rate at which a system can be trained. We demonstrate an approach that utilizes users' calendar and appointment information to perform interactionless training of an 802.11-based indoor localization system. Our system automatically determines if a user attended a calendar event, resulting in accuracy comparable to our previously published …