Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Systems and Communications

2015

Spacecraft Electrical Design

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Design Of An Onboard Distributed Multiprocessing System For A Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh Mar 2015

Design Of An Onboard Distributed Multiprocessing System For A Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter program aims to develop a low-cost framework to facilitate the development of CubeSat-class spacecraft (small spacecraft with nominal dimensions of 10 cm x 10 cm x 10 cm) for a parts cost of less than $5,000. To validate the framework that has been developed, a prototype unit will also be fabricated and tested in low-Earth orbit. In addition to validating the development of Open Prototype for Educational Nanosats (OPEN) framework, the spacecraft will perform on-orbit science. One aspect of the science mission will be to demonstrate and characterize the efficacy of two types of image processing. To this …


Hardware Design For An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh Mar 2015

Hardware Design For An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh

Jeremy Straub

Attitude determination and control is one of the most important subsystems on any satellite, allowing the spacecraft to sense and control its orientation while in orbit. Attitude sensing is achieved by measuring the satellite’s acceleration, rotation, and it’s alinement to Earth’s magnetic field. With its orientation determined, a satellite can use one or several different techniques to regulate its motion. One methods is to use of a pseudo-passive system of electromagnets (called magnetorquers) powered at specific times to use magnetic fields generated by the Earth to exert force on the spacecraft, thereby controlling the rotation of the satellite and facilitating …