Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Structural Sizing Of Post-Buckled Thermally Stressed Stiffened Panels, Walid Arsalane May 2022

Structural Sizing Of Post-Buckled Thermally Stressed Stiffened Panels, Walid Arsalane

Theses and Dissertations

Design of thermoelastic structures can be highly counterintuitive due to design-dependent loading and impact of geometric nonlinearity on the structural response. Thermal loading generates in-plane stresses in a restrained panel, but the presence of geometric nonlinearity creates an extension-bending coupling that results in considerable transverse displacement and variation in stiffness characteristics, and these affects are enhanced in post-bucking regimes. Herein a methodology for structural sizing of thermally stressed post-buckled stiffened panels is proposed and applied for optimization of the blade and hat stiffeners using a gradient-based optimizer. The stiffened panels are subjected to uniform thermal loading and optimized for minimum …


Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan Jun 2021

Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan

Master's Theses

Accurate mechanical analysis of composite structures is necessary for the prediction of laminate behavior. Cylindrical composite tubes are a mainstay in many structural applications. The fundamental design of circular composite cross-sections necessitates the development of a comprehensive composite lamination theory. A new analytical method is developed to characterize the behavior of thin-walled composite cylindrical tubes using a modified plate theory. A generated numerical solver can predict properties such as axial stiffness, bending stiffness, layer stresses, and layer strains in composite tubes subjected to combined mechanical loading and thermal effects. The model accounts for the curvature by transforming and translating the …


A Comparison Of Crushing Parameters Of Graphite Composite Thin-Walled Cylinders Cured In Low And High Pressures, Trenton John Matson Sep 2019

A Comparison Of Crushing Parameters Of Graphite Composite Thin-Walled Cylinders Cured In Low And High Pressures, Trenton John Matson

Master's Theses

Out-of-Autoclave (OoA) processes for manufacturing aerospace-grade parts needs to be better understood to further the development and success of industries that are manufacturing reusable launch vehicles, military and commercial aircraft, and spacecraft. Overcoming the performance limitations associated with OoA, also known as low-pressure prepreg curing, methods (void count, energy absorption, etc.) will help decrease the costs associated with aerospace composite manufacturing and the negative environmental effects correlated with high-pressure composite curing methods. Experimental, theoretical, and numerical approaches are used to explore both low and high-pressure curing cycles and how the two different processes affect final cured parts. Quasi-static uniaxial compression …


Thermal-Fatigue And Thermo-Mechanical Equivalence For Transverse Cracking Evolution In Laminated Composites, Javier Cabrera Barbero Jan 2018

Thermal-Fatigue And Thermo-Mechanical Equivalence For Transverse Cracking Evolution In Laminated Composites, Javier Cabrera Barbero

Graduate Theses, Dissertations, and Problem Reports

Carbon fiber reinforced plastics (CFRP) are potential materials for many aerospace and aeronautical applications due to their high specif strength/weight and a low coeffcient of thermal expansion (CTE) resulting in a high long-term stability. Among candidate structures, the re-entry reusable launch vehicles (RLV), the fuel oxidant storage and transportation at cryogenic temperature, space satellites, and aircraft structure (frame, wings, etc...) can be highlighted. However, CFRP are prone to internal damage as a result of high residual stresses and thermal fatigue loading. In this study, micro-cracking damage evolution in laminated composites subjected to monotonic cooling and thermal cyclic loads is developed …


Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry Jun 2010

Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry

Aerospace Engineering

A small scale composite wing based on a design found on an experimental aircraft was designed, constructed, and tested dynamically and statically. The wing was constructed similarly to an experimental aircraft wing. The performed static test was intended to produce pure bending. Strain gages were used to measure strains on the wing structure. The strains were converted to stresses to aid in analysis. The static test results suggested that the wing was actually under torsion. Four structural modes were found from the static test. A finite element analysis model was made to compare experimental results to numerical analytical results. The …