Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Engineering

Effects Of Seawater On The Mechanical Behavior Of Composite Sandwich Panels Under Monotonic Shear Loading, Thomas Robert Woo Dec 2012

Effects Of Seawater On The Mechanical Behavior Of Composite Sandwich Panels Under Monotonic Shear Loading, Thomas Robert Woo

Master's Theses

Abstract

Salt water environments are very harsh on materials that are used within them. Many issues are caused by either corrosion and/or internal degradation to the materials themselves. Composites are better suited for this environment due to their high strength to weight ratios and their corrosion resistance, but very little is known about the fracture mechanics of composites. The goal of this study is to gain a better understanding for the behavior of a composite boat hull under a shear loading, similar to the force water applies on the hull as the boat moves through the water; then attempt to …


Manufacturing Processes In An All-Aluminum Airframe, Stewart Mcdougall Nov 2012

Manufacturing Processes In An All-Aluminum Airframe, Stewart Mcdougall

Aerospace Engineering

One often overlooked aspect to building an aircraft is the manufacturing process used to put it into production. This may be a major contributor to acquisition cost and requires a large amount of money to implement. Once all the tooling has been purchased, one of the greatest costs is labor. The experience of building an all-aluminum aircraft shows that the production process is one which may be done in many different ways. Minimizing the assembly time is important for aircraft manufacturers and one of the best ways to do that is on the assembly line itself. Specific practices in the …


Optimizing The Mechanical Characteristics Of Bamboo To Improve The Flexural Behavior For Biocomposite Structural Application, Jay Lopez Nov 2012

Optimizing The Mechanical Characteristics Of Bamboo To Improve The Flexural Behavior For Biocomposite Structural Application, Jay Lopez

Master's Theses

Global awareness and preservation have spurred increasing interest in utilizing environmentally friendly materials for high-performance structural applications. Biocomposites pose an appealing solution to this issue and are characterized by their sustainable lifecycles, biodegradable qualities, light weight, remarkable strength, and exceptional stiffness. Many of these structural qualities are found in applications that exhibit flexural loading conditions, and this study focuses on improving the bending performance of engineered biocomposite structures. The current application of biocomposites is increasing rapidly, so this expanding research explores other natural constituent materials for biocomposite structures under flexural loading.

The renewable material investigated in this study was experimentally …


Mechanical Optimization And Buckling Analysis Of Bio-Composites, Cameron D. Chan Nov 2012

Mechanical Optimization And Buckling Analysis Of Bio-Composites, Cameron D. Chan

Master's Theses

Today’s environmental concerns have led a renewed search in industry to find new sustainable materials to replace non-renewable resources. President Barack Obama also quoted in the recent 2012 Presidential Debate “that there is a need to build the energy sources of the future and invest in solar, wind, and bio-fuels.” Bio-composites are believed to be the future and the new substitute for non-renewable resources. Bio-composites are similar to composites in that they are made up of two constituent materials; however the main difference is that bio-composites are made from natural fibers and a biopolymer matrix. This research investigates the buckling …


Investigation Into Suitability Of Geopolymers (Illite & Metakaolin) For The Space Environment, Brandon T. Cesul Sep 2012

Investigation Into Suitability Of Geopolymers (Illite & Metakaolin) For The Space Environment, Brandon T. Cesul

Theses and Dissertations

Suitability of non-organic polymers for space application is studied. Materials included are illite and metakaolin. Bulk material suitability was investigated for exposure to ultraviolet radiation, atomic oxygen, and high energy charged particles. Outgassing phenomenon of the materials was studied. Curing shrinkage reduction techniques were identified as well.


Performance Effects Of Damage Arrestment Devices On Sandwich Composite Beams Under Monotonic Loading, Yvette Vanessa Wood Sep 2012

Performance Effects Of Damage Arrestment Devices On Sandwich Composite Beams Under Monotonic Loading, Yvette Vanessa Wood

Aerospace Engineering

Face-core delamination has become a subject matter in the Aerospace industry, as it can lead to early failure. In this study, sandwich composite beams are tested initially with no delamination to obtain the ultimate strength. A second case of delamination in the center of the beam in initialized to verify a decrease in ultimate strength. This experiment investigates the performance effects of the addition of Damage Arrestment Devices (DADs), in composite sandwich beams. The performance criterion is measured by strength in flexural loading test. The objective of this project is to verify an increase in the strength and performance with …


Two-Stage, High-Altitude Rocket With Internal Skeleton Design Entered In Advance Category Of 7th Esra Irec, Samuel S. Bowman, Kevin J. Byrne, Allen Capatina, Aliki S. Loper-Leddy, Joshua A. Van Schoyck Aug 2012

Two-Stage, High-Altitude Rocket With Internal Skeleton Design Entered In Advance Category Of 7th Esra Irec, Samuel S. Bowman, Kevin J. Byrne, Allen Capatina, Aliki S. Loper-Leddy, Joshua A. Van Schoyck

Aerospace Engineering

A high-altitude, two-stage rocket was designed, built, and entered in the advanced category of the 7th Annual Experimental Sounding Rocket Association (ESRA) Intercollegiate Rocketry Engineering Competition (IREC). The rocket, called AJAKS, featured an internal skeleton made of carbon fiber rods, and a combination of plywood, carbon, and aluminum bulkheads. Loads were driven through the internal structure, with an outer skin tube providing an aerodynamic surface. A unique separation device was developed to ensure proper stage separation. The competition required the rocket to carry a 10-lb payload, which was chosen by the team to consist of an IMU and data …


The Effect Of A Low-Velocity Impact On The Flexural Strength And Dynamic Response Of Composite Sandwiches With Damage Arrestment Devices, Kodi A. Rider Aug 2012

The Effect Of A Low-Velocity Impact On The Flexural Strength And Dynamic Response Of Composite Sandwiches With Damage Arrestment Devices, Kodi A. Rider

Master's Theses

Impact strength is one of the most important structural properties for a designer to consider, but is often the most difficult to quantify or measure. A constant concern in the field of composites is the effect of foreign object impact damage because it is often undetectable by visual inspection. An impact can create interlaminar damage that often results in severe reductions in strength and instability of the structure. The main objective of this study is to determine the effectiveness of a damage arrestment device (DAD) on the mechanical behavior of composite sandwiches, following a low-velocity impact. A 7.56-lbf crosshead …


A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher Aug 2012

A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher

Master's Theses

This research effort explored the possibility of using interwoven conductive and nonconductive fibers in a composite laminate for structural health monitoring (SHM). Traditional SHM systems utilize fiber optics, piezoelectrics, or detect defects by nondestructive test methods by use of sonar graphs or x-rays. However, these approaches are often expensive, time consuming and complicated.

The primary objective of this research was to apply a resistance based method of structural health monitoring to a composite structure to determine structural integrity and presence of defects.

The conductive properties of fiber such as carbon, copper, or constantan - a copper-nickel alloy - can be …


Response Surface Optimization Of Electron Beam Freeform Fabrication Depositions Using Design Of Experiments, Patricia A. Quigley Jul 2012

Response Surface Optimization Of Electron Beam Freeform Fabrication Depositions Using Design Of Experiments, Patricia A. Quigley

Engineering Management & Systems Engineering Theses & Dissertations

The Electron Beam Freeform Fabrication (EBF3 ) System is a material depositing, layer additive technique that produces three dimensional (3D) parts out of a wide range of metals in high vacuum, using an electron beam and wire feedstock. Screening deposition trials on a titanium alloy, Ti-6Al-4V, at the National Aeronautics Space Administration (NASA) revealed selective vaporization of the aluminum content of linear prototypes when subjected to chemical analysis. In this study, the aluminum content, bead height and bead width output responses were analyzed from a systematic study of the effects that the interactions of the EBF3 processing parameters …


Flaperon Assembly Manual For Pegastol Aftermarket Wings, Eric Alan Gray Jun 2012

Flaperon Assembly Manual For Pegastol Aftermarket Wings, Eric Alan Gray

Aerospace Engineering

No abstract provided.


The Study Of Natural Composite I-Beam In A Three Point Bending Test, Abdel Shabbar Jun 2012

The Study Of Natural Composite I-Beam In A Three Point Bending Test, Abdel Shabbar

Aerospace Engineering

The objective of this experiment is to conduct a series of unidirectional tensile test on several samples of natural occurring plant fibers. Among the materials tested, hemp has proven to be the most promising candidate as the base material in creating an all-natural composite I-Beam. This I-Beam will be entered into the annual SAMPE 2012 competition to compete against other schools and universities nationwide. These I-Beams will undergo a three point bending test, and must withstand the greatest load whilst remaining in the parameters set by SAMPE. This I-Beam will go on to take third place internationally. In addition, the …


A Study On Organic Epoxy And Hemp Composite Plates With An Emphasis On Mechanical And Finite Element Analysis, Alma Melendez Jun 2012

A Study On Organic Epoxy And Hemp Composite Plates With An Emphasis On Mechanical And Finite Element Analysis, Alma Melendez

Aerospace Engineering

Several vibration and tensile tests were conducted for four natural fiber hemp composites in order to observe its behavior and acquire the material properties of hemp. Two plates were made on the Cal Poly press table, while the other two plates were made on the Cal Poly vacuum table. All four plates are made of 100% hemp under three different types of weave. The first plate is called CTPT-12, has a thickness of 0.053 inches, and was made on the press table. The second plate is called CTL4 with a thickness of 0.152 inches and made on the press table. …


Effect Of Multifunctional Material On The Mechanical Behavior Of Composite Structure Using Finite Element Analysis, Nicholas A. Romonoski Jun 2012

Effect Of Multifunctional Material On The Mechanical Behavior Of Composite Structure Using Finite Element Analysis, Nicholas A. Romonoski

Aerospace Engineering

No abstract provided.


Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen Jun 2012

Development Of A Pyrotechnic Shock Simulation Apparatus For Spacecraft Applications, Joseph Binder, Matthew Mccarty, Chris Rasmussen

Aerospace Engineering

This report details the research, design, construction, and testing of a pyrotechnic shock simulation apparatus for spacecraft applications. The apparatus was developed to be used in the Space Environments Lab at California Polytechnic State University. It will be used for testing spacecraft components with dimensions up to 24”x12”x12” as well as CubeSats. Additionally, it may be used as an instructional or demonstrational tool in the Aerospace Department’s space environments course. The apparatus functions by way of mechanical impact of an approximately 20 lb stainless steel swinging hammer. Tests were performed to verify the simulator’s functionality. Suggestions for improvement and further …


Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski Jun 2012

Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski

Aerospace Engineering

The purpose of the senior project is to construct a thermal vacuum by utilizing a preexisting vacuum chamber in the Space Environments Lab, and a donated Advanced Thermal Sciences (ATS) chiller. While a thermal vacuum is already available on campus, building one for the Space Environments Lab would grant undergraduates access to the equipment, allowing a much better understanding of testing methods and procedures in use by the aerospace industry. This paper explains the design and analysis of the thermal vacuum (T-VAC) project as well as the operation and procedures required for the ATS chiller and fill/drain tank. The thermal …


Development Of A Ground Based Atomic Oxygen And Vacuum Ultraviolet Radiation Simulation Apparatus, Max Jay Glicklin Jun 2012

Development Of A Ground Based Atomic Oxygen And Vacuum Ultraviolet Radiation Simulation Apparatus, Max Jay Glicklin

Master's Theses

The space environment possesses numerous unique and unusual attributes, creating challenges that must be considered in order to accomplish a successful space mission. Two of the detrimental aspects of the space environment include Atomic Oxygen, AO, and Ultraviolet, UV, radiation. UV radiation becomes more severe in space as there is no atmosphere to attenuate incoming photons, thereby exposing spacecraft to radiation that never reaches the surface of the Earth. Overall, space vehicles are exposed to a total of 107.4 Watts/m2 of light shorter than 400 nm. AO is created by the photo disassociation of molecular oxygen by UV radiation …


Feasibility Study Into The Use Of 3d Printed Materials In Cubesat Flight Missions, Daniel Fluitt Jun 2012

Feasibility Study Into The Use Of 3d Printed Materials In Cubesat Flight Missions, Daniel Fluitt

Master's Theses

The CubeSat Program has provided access to space for many universities, private companies, and government institutions primarily due to the low cost of CubeSat satellite development. While these costs are orders of magnitude lower than similarly capable nano-satellite missions, they are still outside of the budgetary constraints of many potential developers including university and high school clubs. Using 3D printed plastics in the production of CubeSat structures and mechanisms presents a large cost savings opportunity that will allow these institutions to participate in the development of these satellites, expanding the educational and scientific impact of the CubeSat Program.

Five rapid …


Design Of A Human Powered Helicopter Airframe, Sheen Kao, Daniel Layton, Philip Sobol Jun 2012

Design Of A Human Powered Helicopter Airframe, Sheen Kao, Daniel Layton, Philip Sobol

Mechanical Engineering

In 1989 Cal Poly’s Da Vinci III was the first human powered helicopter (HPH) to achieve flight; our goal is to research and develop a new airframe for the next generation Da Vinci. This report outlines a brief history of human powered flight and details a method of constructing for the airframe. An optimized airframe geometry was also researched and is explained in detail.


Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera Jun 2012

Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera

Mechanical Engineering

The following report encompasses the Human Powered Helicopter Rotor Team’s conceptual models and ideas based on research and modeling analysis. The following gives an overview of material researched, concept generation, analyzation, manufacturing, and testing for a rotor structure to be installed in a Human Powered Helicopter.


An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez Jun 2012

An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez

Master's Theses

This research studies the effects of a damage arrestment device embedded between a carbon fiber facesheet and foam core to find whether there is an increase in the structural integrity of the sandwich composites. Experimental and theoretical finite element analyses are implemented for two different composite sandwich geometries; plates and beams. Each structure consisted of the same loading criteria and was restricted to the same vibration fixture during the experiment. An accelerometer was placed on the composite plate to record the amplitude and the natural frequencies of the composite structure. Each composite specimen is then fixed to the surface of …


Modal Analysis Of Composite Structures With Damping Material, Kellie Michelle Tremaine Jun 2012

Modal Analysis Of Composite Structures With Damping Material, Kellie Michelle Tremaine

Master's Theses

The purpose of this study is to develop an analytical solution for modal analysis of actively damped orthotropic composite plates in bending and to verify it with experimental analysis.

The analytical modal analysis solution for composite plate dynamics is derived using Euler theory. This analysis applies to structures with orthotropic lamina of uniform material properties at any lamination angle. The bending-extensional coupling can be neglected for plates that are symmetric or approximately symmetric, which allows an exact solution for natural frequency and mode shape to be obtained. An exact solution can be found for natural vibration and in general.

The …


Analysis And Testing Of Heat Transfer Through Honeycomb Panels, Daniel D. Nguyen May 2012

Analysis And Testing Of Heat Transfer Through Honeycomb Panels, Daniel D. Nguyen

Aerospace Engineering

This project attempts to simulate accurately the thermal conductivity of honeycomb panels in the normal direction. Due to the large empty space of the honeycomb core, the thermal radiation mode of heat transfer was modeled along with conduction. Using Newton’s Method to solve for a steady state model of heat moving through the honeycomb panel, the theoretical effective thermal conduction of the honeycomb panel was found, ranging from 1.03 to 1.07 Q/m/K for a heat input of 2.5 W to 11.8 W. An experimental model was designed to test the theoretical results, using a cold plate and a heat plate …


Design Of Orbital Maneuvers With Aeroassisted Cubesatellites, Stephanie Clark May 2012

Design Of Orbital Maneuvers With Aeroassisted Cubesatellites, Stephanie Clark

Graduate Theses and Dissertations

Recent advances within the field of cube satellite technology has allowed for the possible development of a maneuver that utilizes a satellite's Low Earth Orbit (LEO) and increased atmospheric density to effectively use lift and drag to implement a noncoplanar orbital maneuver. Noncoplanar maneuvers typically require large quantities of propellant due to the large delta-v that is required. However, similar maneuvers using perturbing forces require little or no propellant to create the delta-v required. This research reported here studied on the effects of lift on orbital changes, those of noncoplanar types in particular, for small satellites without orbital maneuvering thrusters. …


Humanitarian Response Unmanned Aircraft System (Hr-Uas), Justin T. Knott, David P. Brundage, John S. Campbell, D. Austin Eldridge, Shaun B. Hooker, Jake R. Mashburn, Jacob L. Philpott May 2012

Humanitarian Response Unmanned Aircraft System (Hr-Uas), Justin T. Knott, David P. Brundage, John S. Campbell, D. Austin Eldridge, Shaun B. Hooker, Jake R. Mashburn, Jacob L. Philpott

Chancellor’s Honors Program Projects

No abstract provided.


Creep Of Hi-Nicalon S Ceramic Fiber Tows At Elevated Temperature In Air And In Steam, Benjamin R. Steffens Mar 2012

Creep Of Hi-Nicalon S Ceramic Fiber Tows At Elevated Temperature In Air And In Steam, Benjamin R. Steffens

Theses and Dissertations

Structural aerospace components require materials to have superior long-term mechanical properties that can withstand severe environmental conditions, such as high temperatures, high pressures and moisture, whilst enduring the loads they are designed for. Ceramic-matrix composites (CMCs) are capable of maintaining excellent strength and creep resistance at high temperatures, which make them attractive candidate materials for aerospace applications, particularly in propulsion. Silicon Carbide (SiC) ceramic fibers have been used as constituent materials in CMCs, although oxidation of the SiC to SiO2 has been a known degredation mechanism. Recently developed near stoichiometric SiC fibers have shown significant improvements in thermochemical stability; …


Material Characterization For Composite Materials In Load Bearing Wave Guides, Gabriel Almodovar Mar 2012

Material Characterization For Composite Materials In Load Bearing Wave Guides, Gabriel Almodovar

Theses and Dissertations

This study will establish a methodology to examine samples of composite material for application in a load bearing waveguide. The composite material will operate in a specific frequency range for applications in small RPAs. A graphite epoxy stiffening component will be primarily considered. Different nickel, graphene, and carbon nanotube (CNT) coatings and films will be applied to the graphite epoxy. Tests will determine the material's radio frequency (RF) performance for application as an antenna/waveguide component. The study will use scattering (S) parameters determined from a network analyzer to collect these data. The S parameters will then be used to resolve …


Feasibility Analysis For Electrically-Powered Hoverboard, Cameron Chan, Jason Cortez, Jay Lopez Mar 2012

Feasibility Analysis For Electrically-Powered Hoverboard, Cameron Chan, Jason Cortez, Jay Lopez

Aerospace Engineering

Composite materials are engineered by combining two or more constituent materials with significantly different physical or chemical properties in such a way that the constituents are still distinguishable, and not fully blended. Due to today’s high rising prices of gasoline and aviation fuel costs, many manufacturers have turned to the use of lightweight composites in their designs due to the advantages of the composite material, which include outstanding strength, excellent durability, high heat resistance, and significant weight reduction that the composite material properties hold. The purpose of this project is to design and construct a composite structure for an electrically-powered …


The Effect Of Elevated Temperature On The Inelastic Deformation Behavior Of Pmr-15 Solid Polymer, Chad E. C. Ryther Jan 2012

The Effect Of Elevated Temperature On The Inelastic Deformation Behavior Of Pmr-15 Solid Polymer, Chad E. C. Ryther

Theses and Dissertations

The inelastic deformation behavior of PMR-15 neat resin, a high-temperature thermoset polymer, was investigated at temperatures in the 274-316°C range. The experimental program was developed to explore the influence of temperature on tensile loading, relaxation and creep behaviors of PMR-15. The results demonstrate that the mechanical behavior of PMR-15 exhibits a strong dependence on temperature. During strain-controlled tensile loading, the slope of the stress-strain curve in the quasi-elastic region decreases and the flow stress level decreases with increasing temperature. During relaxation, the amount of the stress drop decreases with increasing temperature. Based on experimental results the Viscoplasticity Based on Overstress …


Design And Flight Testing Of A Warping Wing For Autonomous Flight Control, Edward Brady Doepke Jan 2012

Design And Flight Testing Of A Warping Wing For Autonomous Flight Control, Edward Brady Doepke

Theses and Dissertations--Mechanical Engineering

Inflatable-wing Unmanned Aerial Vehicles (UAVs) have the ability to be packed in a fraction of their deployed volume. This makes them ideal for many deployable UAV designs, but inflatable wings can be flexible and don’t have conventional control surfaces. This thesis will investigate the use of wing warping as a means of autonomous control for inflatable wings. Due to complexities associated with manufacturing inflatable structures a new method of rapid prototyping deformable wings is used in place of inflatables to decrease cost and design-cycle time. A UAV testbed was developed and integrated with the warping wings and flown in a …