Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Minimizing Cr-Evaporation From Balance Of Plant Components By Utilizing Cost-Effective Alumina-Forming Austenitic Steels, Lingfeng Zhou Jan 2022

Minimizing Cr-Evaporation From Balance Of Plant Components By Utilizing Cost-Effective Alumina-Forming Austenitic Steels, Lingfeng Zhou

Graduate Theses, Dissertations, and Problem Reports

A solid oxide fuel cell (SOFC) is a clean and efficient energy conversion device. The development of intermediate-temperature SOFCs has made it preferable to use metallic interconnects (MICs) to greatly reduce the cost and significantly increase the efficiency compared to ceramic interconnect materials. However, gaseous chromium species will evaporate from the chromium-containing layer formed on the surface of commonly used MICs and balance of plant (BoP) components. Volatile chromium species have been shown to form solid deposits which poison the cathodes of SOFCs, causing drastic cell performance degradation and thereby limiting commercialization. In order to alleviate the Cr poisoning and …


Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt Jan 2020

Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt

Theses and Dissertations--Mechanical Engineering

In order to understand the oxidation of solid carbon materials by oxygen-containing gases, carbon oxidation has to be studied on the atomic level where the surface reactions occur. Graphene and graphite are etched by oxygen to form characteristic pits that are scattered across the material surface, and pitting in turn leads to microstructural changes that determine the macroscopic oxidation behavior. While this is a well-documented phenomenon, it is heretofore poorly understood due to the notorious difficulty of experiments and a lack of comprehensive computational studies. The main objective of the present work is the development of a computational framework from …


High Temperature Oxidation Study Of Tantalum Carbide-Hafnium Carbide Solid Solutions Synthesized By Spark Plasma Sintering, Cheng Zhang Oct 2016

High Temperature Oxidation Study Of Tantalum Carbide-Hafnium Carbide Solid Solutions Synthesized By Spark Plasma Sintering, Cheng Zhang

FIU Electronic Theses and Dissertations

Tantalum carbide (TaC) and hafnium carbide (HfC) possess extremely high melting points, around 3900 oC, which are the highest among the known materials. TaC and HfC exhibit superior oxidation resistance under oxygen deficient and rich environments, respectively. A versatile material can be expected by forming solid solutions of TaC and HfC. However, the synthesis of fully dense solid solution carbide is a challenge due to their intrinsic covalent bonding which makes sintering challenging.

The aim of the present work is to synthesize full dense TaC-HfC solid solutions by spark plasma sintering with five compositions: pure HfC, HfC-20 vol.% TaC …


Oxidation And Mechanical Properties Of In Situ Hybrid (Ticp+Tibw)/Ti6al4v Composites With Tailored Network Microstructure, L. J. Huang, X. P. Cui, Y. Jiao, T. B. Duan, X. T. Li, Y. N. Gao, L. Geng Oct 2016

Oxidation And Mechanical Properties Of In Situ Hybrid (Ticp+Tibw)/Ti6al4v Composites With Tailored Network Microstructure, L. J. Huang, X. P. Cui, Y. Jiao, T. B. Duan, X. T. Li, Y. N. Gao, L. Geng

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Kinetics And Mechanisms Of Titanium Wire Oxidation, Tanmay P. Engineer Dec 2012

Kinetics And Mechanisms Of Titanium Wire Oxidation, Tanmay P. Engineer

Boise State University Theses and Dissertations

The kinetics and mechanisms of oxidation of titanium wire were assessed using a large test matrix in Ar-20% O2 at 800 to 1200°C, and N2-20% O2 at 1000°C, for 0.5 to 24 hours. The effects of geometry on oxidation were evaluated by investigating the behavior of six high purity Ti wires with diameters varying from 50 to 2000 μm, with an objective of producing hollow TiO2 tubes.

Oxidation behavior was characterized by measuring oxide thicknesses and morphology by optical microscopy, and the phases were characterized using a combination of SEM and TEM. The kinetics was …