Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Prediction Of Metal Sample Failure From Scanning Electron Microscope Images Using Deep Learning Neural Network, Lawrence Madriaga, Ivan Novikov, Morteza Nurcheshmeh Nov 2018

Prediction Of Metal Sample Failure From Scanning Electron Microscope Images Using Deep Learning Neural Network, Lawrence Madriaga, Ivan Novikov, Morteza Nurcheshmeh

Posters-at-the-Capitol

We present the preliminary results on using a deep learning neural network to predict a metal sample failure based on a set of images obtained with a Scanning Electron Microscope.

Various metal alloy samples were prepared according to ASTM E8/E8M-11 standards for a tensile test. Each sample was prepared for circle grid analysis and then stressed on a tensile machine. Stress and strain values were obtained for each position along the sample by measuring dimensions of each elongated circle. Increasing stress and strain values were found closer to the breakage of the sample with low values found at the holding …


Cementitious Sensors Exhibiting Stopbands In Acoustic Transmission Spectra, Shreya Vemuganti Nov 2018

Cementitious Sensors Exhibiting Stopbands In Acoustic Transmission Spectra, Shreya Vemuganti

Shared Knowledge Conference

Ultrasonic monitoring in cementitious materials is challenging due to the high degree of attenuation. In wellbore environments, monitoring becomes more challenging due to inaccessibility. Meta materials, also known as acoustic bandgap materials, exhibit an interesting feature of forbidding the propagation of elastic/sound waves and isolate vibration in a certain frequency band. Traditionally, acoustic bandgap materials are developed with inclusions such as tin, aluminum, gold, steel in a polymer matrix. In this study, we present the development of three-dimensional cementitious sensors capable of exhibiting stopbands in the acoustic transmission spectra using carbon nanotubes. Relatively wide stopbands were engineered using Floquet-Bloch periodic …


Improving Sheet Molding Compound, Zebulon G. Mcreynolds Sep 2018

Improving Sheet Molding Compound, Zebulon G. Mcreynolds

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Zebulon McReynolds

An important attribute of the compression molding process is the requirement of (Sheet Molding Compound) SMC. The fibers, commonly glass or carbon fibers, are impregnated with thermoset resin and collected in continuous form on a conveyor belt. The SMC charge is rolled between rollers to wet out the fibers with resin. The SMC charge is then compression molded to a desired part reflecting the designed mold. The part could be an automotive part or any other industrial applicable part. Compression molding with fibers and polymers is the largest component of most of the manufacturing industries in the world. …


Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev Aug 2018

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, 110 billion cubic meters of natural gas (primarily methane), a potent greenhouse gas, are flared off for environmental and safety reasons. This process results in enough fuel to provide the combined natural gas consumption of Germany and France. The research team developed a thermophotovoltaic device to convert thermal energy to electricity at a high efficiency using proprietary emitters and combustion system. With the current focus being fuel efficiency and the combustion process, the assembly was simulated using ANSYS Fluent modelling software and the following parameters were optimized: air/fuel ratios, flow rates, and inlet sizes. Simultaneously the heat transfer across …


Solid Solution Strengthened Fe Alloys, Sidharth Krishnamoorthi, Ruizhe Su, Yifan Zhang, Xinghang Zhang Aug 2018

Solid Solution Strengthened Fe Alloys, Sidharth Krishnamoorthi, Ruizhe Su, Yifan Zhang, Xinghang Zhang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Iron (Fe)-based alloys (such as steel) are widely used structural materials in industry. Numerous methods have been applied to improve their mechanical properties. In this study, we used a technique know as magnetron sputtering to deposit various Fe-based binary alloy coatings to investigate the influence of solutes on solid solution hardening. Several factors contribute to the solid solution hardening of the alloys, such as composition, atomic radius, modulus, and lattice parameter. After preliminary calculations and analysis, we selected several solutes, including molybdenum (Mo), niobium (Nb), and zirconium (Zr). The compositions of solutes were varied to be 2.5, 5, 8 atomic …


High Performance Mortar With 100% Recycled Aggregate Using Titanium Dioxide Nanoparticles, Molly Schrager, Vito Francioso, Arjun Kadakia, Mirian Velay-Lizancos Aug 2018

High Performance Mortar With 100% Recycled Aggregate Using Titanium Dioxide Nanoparticles, Molly Schrager, Vito Francioso, Arjun Kadakia, Mirian Velay-Lizancos

The Summer Undergraduate Research Fellowship (SURF) Symposium

Concrete and mortar are materials commonly used in construction. Their main compounds are cement, aggregates (sand and gravel) and water. In an effort to increase the sustainability of these materials, the idea of using recycled aggregates from ground old concrete and using it to make mortar and concrete has gained more interest. It has two advantages: it reduces the need to mine for raw materials and lessens the amount of old and defective concrete that is typically put in landfills. But, the use of recycled concrete aggregate lowers the strength of mortars and concretes because the residual compounds in the …


Determining The Optimal Traffic Opening Time Using Piezoelectric Sensors, Adlan Amran, Yen-Fang Su, Na Lu Aug 2018

Determining The Optimal Traffic Opening Time Using Piezoelectric Sensors, Adlan Amran, Yen-Fang Su, Na Lu

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Indiana Department of Transportation (INDOT) requires a reliable method of determining the early age quality of concrete to improve traffic opening time. We propose to develop an in-situ method that enables an accurate, efficient, and non-destructive health monitoring of concrete using the electromechanical impedance (EMI) technique coupled with a piezoelectric sensor named Lead Zirconate Titanate (PZT). The test was conducted by mounting a PZT sensor on mortar samples. The PZT sensor was then excited by a voltage to track the strengthening of samples. The data obtained from the EMI technique was refined using the Root Mean Square Deviation (RMSD) …