Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Structural Engineering

Graduate Theses, Dissertations, and Problem Reports

FRP

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Evaluation Of 50’ Frp Truss Bridges With Timber Decks, Maxwell Browning Carey Jan 2024

Evaluation Of 50’ Frp Truss Bridges With Timber Decks, Maxwell Browning Carey

Graduate Theses, Dissertations, and Problem Reports

Fiber-reinforced polymer (FRP) composites have become mainstream structural materials and are being utilized in many different structural applications because of their outstanding thermos-mechanical properties and other characteristics. These characteristics include exceptional corrosion resistance, energy absorption, durability, high strength-to-weight, stiffness-to-weight ratios, and others. Also, FRP composites are cost effective especially when accounting for the service life of such a material.

In this study, testing and analysis were performed at both the component as well as a structural system levels. Herein, two FRP truss bridges of different widths with 50 ft. spans underwent extensive testing and analysis in accordance with AASHTO specifications. …


Frp Pedestrian Bridges, Joseph Ryan Virga Jan 2023

Frp Pedestrian Bridges, Joseph Ryan Virga

Graduate Theses, Dissertations, and Problem Reports

Advanced fiber-reinforced polymer (FRP) composites are being used as mainstream structural materials to build complex infrastructure systems. Such application of FRP composites can be attributed to their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, higher energy absorption, durability, and competitive life-cycle costs. FRP composites are increasingly being considered as suitable alternative structural materials to traditional construction materials such as timber, concrete, and steel.

In this work, detailed experimental investigation has been carried out on different types of glass FRP composite pedestrian bridges with FRP and/or timber deck. Four full-scale FRP pedestrian bridges, including 70`×8.5’ and 70’×10’ single-span bridges, a 16’×8’ …


Strengthening Of Damaged Structural Members With External Frp, Krishna Tulasi Gadde Jan 2023

Strengthening Of Damaged Structural Members With External Frp, Krishna Tulasi Gadde

Graduate Theses, Dissertations, and Problem Reports

Fiber reinforced polymer (FRP) composites are excellent alternatives to traditional materials for civil infrastructure. Several researchers have worked on the application of FRP composites for construction, repair, and rehabilitation of structures. This research aims at evaluating the use of carbon, glass, basalt, and hybrid FRPs with epoxy and polyurethane resin systems for rehabilitation of damaged structural components. Following evaluations were carried out in this research: (i) tension testing of FRP coupons, (ii) compression testing of concrete cylinders with and without damaged sections/FRP reinforcements, (iii) flexural testing of external-FRP reinforced RC beams with and without damages, (iv) pull-off tests on FRP …


A Parametric Study Of Lateral-Torsional Buckling In Pultruded Frp Beams Using Abaqus, Robert Nathaniel Baylor Jan 2021

A Parametric Study Of Lateral-Torsional Buckling In Pultruded Frp Beams Using Abaqus, Robert Nathaniel Baylor

Graduate Theses, Dissertations, and Problem Reports

Fiber Reinforced Polymer (FRP) composites continue to gain popularity in civil and mechanical infrastructure due to a high strength-to-weight ratio, corrosion-resistance, and low maintenance requirements. FRP can also fulfill niche roles requiring non-conductivity and magnetic transparency. The longitudinal forming of pultruded FRP makes it a natural choice for lightweight beams. Although FRP composites have a high strength for their weight, the elastic and shear moduli for glass FRP may only be 1/7 and 1/30 that of steel, respectively. These low stiffnesses make FRP composite beams particularly susceptible to lateral-torsional buckling (LTB). In addition, the low shear to elastic stiffness amplifies …


Short Beam Shear Strength Evaluations Of Gfrp Composites: Correlations Through Accelerated And Natural Aging, William Todd Barker Jan 2019

Short Beam Shear Strength Evaluations Of Gfrp Composites: Correlations Through Accelerated And Natural Aging, William Todd Barker

Graduate Theses, Dissertations, and Problem Reports

Fiber Reinforced Polymers (FRP) composites have been materials of interest in replacing or reinforcing steel, wood, and concrete, but lack of understanding of degradation under physical and chemical aging is a main concern. Through many years of research, the understanding of aging or durability of GFRPs has improved. To be able to evaluate aging related degradation rates, an accelerated aging methodology under varying environments is introduced. Accelerated aging is a concept used to age composites in a lab controlled environment under varying pH conditions (2 to 13) and temperatures (~ -20° to +160°F). Once acceleratedly aged testing is completed, Arrhenius …