Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Structural Engineering

Portland State University

Piling (Civil engineering)

Articles 1 - 4 of 4

Full-Text Articles in Engineering

The Effects Of Long-Duration Subduction Earthquakes On Inelastic Behavior Of Bridge Pile Foundations Subjected To Liquefaction-Induced Lateral Spreading, Jonathan Nasr, Arash Khosravifar Jan 2018

The Effects Of Long-Duration Subduction Earthquakes On Inelastic Behavior Of Bridge Pile Foundations Subjected To Liquefaction-Induced Lateral Spreading, Jonathan Nasr, Arash Khosravifar

Civil and Environmental Engineering Faculty Publications and Presentations

Effective-stress nonlinear dynamic analyses (NDA) were performed for a large-diameter reinforced concrete (RC) pile in multi-layered liquefiable sloped ground. The objective was to assess the effects of earthquake duration on the combination of inertia and liquefaction-induced lateral spreading. A parametric study was performed using input motions from subduction and crustal earthquakes covering a wide range of motion durations. The NDA results showed that the pile head displacements increased under liquefied conditions, compared to nonliquefied conditions, due to liquefaction-induced lateral spreading. The NDA results were used to develop a displacement-based equivalent static analysis (ESA) method that combines inertial and lateral spreading …


Inertial And Liquefaction-Induced Kinematic Demands On A Pile-Supported Wharf: Physical Modeling, Milad Souri, Arash Khosravifar, Stephen E. Dickenson, Scott Schlechter, Nason Mccullough Jan 2018

Inertial And Liquefaction-Induced Kinematic Demands On A Pile-Supported Wharf: Physical Modeling, Milad Souri, Arash Khosravifar, Stephen E. Dickenson, Scott Schlechter, Nason Mccullough

Civil and Environmental Engineering Faculty Publications and Presentations

Results of a centrifuge test on a pile-supported wharf were used to investigate the time-, depth-, and row-dependent nature of kinematic and inertial loading on wharf piles in sloping rockfill. P-y models were calibrated against recorded bending moments in different piles and different depths. It was found that full kinematic demands and full superstructure inertia should be combined to estimate bending moments at pile head and shallow depths (less than 10 diameters below the ground surface). On the contrary, it was found that applying full kinematic demands alone was adequate to estimate pile bending moments at large depths (greater than …


Modified Design Procedures For Bridge Pile Foundations Subjected To Liquefaction-Induced Lateral Spreading, Arash Khosravifar, Jonathan Nasr Jan 2018

Modified Design Procedures For Bridge Pile Foundations Subjected To Liquefaction-Induced Lateral Spreading, Arash Khosravifar, Jonathan Nasr

Civil and Environmental Engineering Faculty Publications and Presentations

Effective-stress nonlinear dynamic analyses (NDA) were performed for piles in the liquefiable sloped ground to assess how inertia and liquefaction-induced lateral spreading combine in long- and short-duration motions. A parametric study was performed using input motions from subduction and crustal earthquakes covering a wide range of durations and amplitudes. The NDA results showed that the pile demands increased due to (a) longer duration shakings, and (b) liquefaction-induced lateral spreading compared to nonliquefied conditions. The NDA results were used to evaluate the accuracy of the equivalent static analysis (ESA) recommended by Caltrans/ODOT for estimating pile demands. Finally, the NDA results were …


Reducing Seismic Risk To Highway Mobility: Assessment And Design Examples For Pile Foundations Affected By Lateral Spreading, Scott A. Ashford, Michael H. Scott, Deepak Rayamajhi Apr 2013

Reducing Seismic Risk To Highway Mobility: Assessment And Design Examples For Pile Foundations Affected By Lateral Spreading, Scott A. Ashford, Michael H. Scott, Deepak Rayamajhi

TREC Final Reports

Damage in pile supported structures due to liquefaction and liquefaction induced deformation were reported in past earthquakes around the world (e.g., Ansal et al. 1999; Seed et al. 1990; EERI 2010, EERI 2011; GEER 2010a, GEER 2010b, GEER 2011). For example, a reconnaissance report from a recent subduction zone event, the 2010 Chile earthquake (Mw=8.8), showed the pervasive nature of liquefaction and liquefaction-induced lateral spreading damage to bridge foundations (GEER 2010a, Yen et al. 2011). In terms of seismic hazard, the Pacific Northwest shares similar conditions from a Cascadia Subduction Zone (CSZ) earthquake source with the expected earthquake magnitude of …