Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Effect Of Temperature On Early‐Age Properties Of Self‐Consolidating Concrete Equivalent Mortar, Nima Farzadnia, Jing Pan, Kamal Khayat, Eric Wirquin Dec 2020

Effect Of Temperature On Early‐Age Properties Of Self‐Consolidating Concrete Equivalent Mortar, Nima Farzadnia, Jing Pan, Kamal Khayat, Eric Wirquin

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

In this study, the effect of ambient temperature during casting on fresh properties, hydration kinetics, and early‐age compressive strength of self-consolidating concrete (SCC) was evaluated. Concrete equivalent mortars (CEMs) with water‐to‐binder ratios of 0.41 and 0.45 were cast based on SCC mixture designs for building and infrastructure construction and precast applications. The CEMs were prepared at temperatures ranging from 8 to 36°C. Superplasticizer (SP) and air‐entraining agent (AEA) demand were evaluated for the CEM mixtures made with different supplementary cementing material (SCM) and limestone filler types. Test results showed that the ambient temperature can significantly affect the SP and AEA …


Short Beam Shear Strength Evaluations Of Gfrp Composites: Correlations Through Accelerated And Natural Aging, William Todd Barker Jan 2019

Short Beam Shear Strength Evaluations Of Gfrp Composites: Correlations Through Accelerated And Natural Aging, William Todd Barker

Graduate Theses, Dissertations, and Problem Reports

Fiber Reinforced Polymers (FRP) composites have been materials of interest in replacing or reinforcing steel, wood, and concrete, but lack of understanding of degradation under physical and chemical aging is a main concern. Through many years of research, the understanding of aging or durability of GFRPs has improved. To be able to evaluate aging related degradation rates, an accelerated aging methodology under varying environments is introduced. Accelerated aging is a concept used to age composites in a lab controlled environment under varying pH conditions (2 to 13) and temperatures (~ -20° to +160°F). Once acceleratedly aged testing is completed, Arrhenius …


Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke Dec 2018

Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke

Civil Engineering ETDs

Ductile failure of metals has been the focus of research efforts within academia and industry for many years since it is tremendously important for understanding the failure of structures under extreme loading conditions. However, limited research has been dedicated to elevated temperature ductile failure, which is critical for evaluating catastrophic events such as industrial, structural or shipping vessel fires. A detailed investigation was conducted on the structural response of Duplex Stainless Steel at elevated temperatures. The temperature dependence of elastic modulus, yield strength, ultimate strength, and ductility was measured up to 1000°C and a continuum damage plasticity model was developed. …


Behavior Of Eb Frp Masonry Bond Under Service Temperature, Zuhair Al-Aljaberi, John J. Myers, K. Chandrashekhara Jan 2018

Behavior Of Eb Frp Masonry Bond Under Service Temperature, Zuhair Al-Aljaberi, John J. Myers, K. Chandrashekhara

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The interest in advanced composites in repairing and strengthening infrastructure systems has considerably increased, especially as the application externally bonded (EB) fiber reinforced polymer (FRP) has become more well established. Previous research on bond behavior has focused on impact of durability by considering exposure to harsh environmental conditions and testing the specimens after exposure, rather than testing bond performance during exposure. The influence of directly applying temperature on bond behavior represents an open topic that needs to be investigated in more detail. This study is one of the first studies to investigate the bond behavior when the composite is subjected …


Influence Of Strain Rate And Temperature Of Hot Tension Testing On Mechanical Properties Of Medium Carbon Steel S48c, Dedi Priadi, Iwan Setyadi, Eddy S. Siradj Apr 2003

Influence Of Strain Rate And Temperature Of Hot Tension Testing On Mechanical Properties Of Medium Carbon Steel S48c, Dedi Priadi, Iwan Setyadi, Eddy S. Siradj

Makara Journal of Technology

Influence of Strain Rate and Temperature of Hot Tension Testing on Mechanical Properties of Medium Carbon Steel S48C. The characterization of S48C by hot tension testing was done to understanding the influence of temperature and strain rate for S48C flow stress, that close relationship with its forge ability. The hot tension testing was performed on temperatures and strain rates variation (T 850, 900, 950 0C and έ 0,01;1 s-1). The result of hot tension testing showed that increasing temperature decreases ultimate tensile strength (UTS) and flow stress of S48C. The higher decreasing of UTS is on 950 0C about 85% …


Effects Of 0.25 % Mo (Molybdenum) Which Is Contained In The Ductile Cast Iron On Mechanical Properties Of Austempered Ductile Iron (Adi)., Nukman Nukman, Bustanul Arifin, Bambang Sugiarto Apr 2002

Effects Of 0.25 % Mo (Molybdenum) Which Is Contained In The Ductile Cast Iron On Mechanical Properties Of Austempered Ductile Iron (Adi)., Nukman Nukman, Bustanul Arifin, Bambang Sugiarto

Makara Journal of Technology

The aim of this research is to investigate the effects of 0.25 % Mo (Molybdenum) which is contained in the ductile cast iron on mechanical properties of Austempered Ductile Iron (ADI). The various temperatures and the holding times are used in the heat treatment processes. Using a given 0.25 % Mo in the ductile iron, ADI's alloyed developes a higher ultimate tensile stress value and decreases the elongation if we compare with the as cast (non alloy ductile iron). The higher impact energy value obtained at 9000 C austenization and 375o C austempering temperatures during 60 minutes holding times. The …