Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Structural Engineering

PDF

Steel

University of Arkansas, Fayetteville

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Extremely Low Cycle Fatigue Behavior Of Additively Manufactured 17-4ph Stainless Steel, Kaley Collins May 2020

Extremely Low Cycle Fatigue Behavior Of Additively Manufactured 17-4ph Stainless Steel, Kaley Collins

Civil Engineering Undergraduate Honors Theses

Steel structures survive seismic loading thanks to components capable of dissipating large amounts of energy through large deformations. Future optimizations of these components include complex free-form geometries that are difficult to fabricate with traditional casting processes. Additive manufacturing (AM) is an alternative for producing optimized free-form geometries. AM material contains significant differences in microstructural characteristics and mechanical behavior compared to its wrought counterparts. Research has been conducted to understand the effect of microscopic features in the high cycle fatigue (HCF) and low cycle fatigue (LCF) regimes. This study focuses on the behavior of 17-4 Precipitation Hardening (PH) stainless steel in …


Development Of A Mechanical Device For Measuring Connection Rotations During Seismic Loading, Garrett Tatum May 2019

Development Of A Mechanical Device For Measuring Connection Rotations During Seismic Loading, Garrett Tatum

Civil Engineering Undergraduate Honors Theses

This engineering design project sought to design a cheap and easy-to-use sensor to monitor seismic connection rotations in steel buildings during earthquakes by using a linear ratchet mechanism. The idea for the project goes against the mainstream of research that is seeking to develop complex digital networks for monitoring structures in earthquake regions. Whereas many modern sensor networks require high-cost, professionally maintained digital networks, an analog sensor could provide much of the same information at a fraction of the cost, allowing sensors to be more widely utilized, particularly in developing countries. This project required an iterative engineering design process to …


Effect Of Continuity Plate Eccentricity On The Performance Of Welded Beam-To-Column Connections, Jason Thomas Norwood Dec 2018

Effect Of Continuity Plate Eccentricity On The Performance Of Welded Beam-To-Column Connections, Jason Thomas Norwood

Graduate Theses and Dissertations

Beam-to-column connections in structural steel buildings may have varying degrees of rotational restraint and varying degrees of moment transfer. In fully restrained moment connections, shear is typically transferred through the beam web, while the moment is mostly transferred through the beam flanges which create tension/compression force couples. Column sections that are incapable of resisting these flange forces are often retrofitted with continuity plates within the connection region to improve capacity. In cases of unequal beam depths on either side of the column, an eccentricity between the framed-in beam flange and continuity plate may be required; however, limited research exists to …