Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Structural Robustness Of Long-Span Cable-Supported Bridges, Qian Chen Jan 2021

Structural Robustness Of Long-Span Cable-Supported Bridges, Qian Chen

Dissertations and Theses

As a critical part of the current infrastructure system, long-span bridges are directly exposed to adverse environments, such as floods, scours, hurricanes, etc., and dynamic loads such as earthquakes and vehicular impacts. Additionally, recent long-span cable-supported collapse examples show that many bridges suffered progressive collapse when local damage occurred, and they are highly vulnerable to severe damages in the event of a localized failure. However, the traditional design approaches are unable to provide explicit measures of residual safety of bridges, especially after an abnormal event. Currently available redundancy and robustness evaluation approaches, which were developed mainly for short-span bridges, are …


Alternate Load Paths And Retrofits For Long-Span Truss Bridges Under Sudden Member Loss And Blast Loads, Huihui Li Jan 2021

Alternate Load Paths And Retrofits For Long-Span Truss Bridges Under Sudden Member Loss And Blast Loads, Huihui Li

Dissertations and Theses

In current bridge design practices, due to the existence of alternate load paths (ALPs), continued stability and progressive collapse-resistance of long-span bridges following the initialed loss of a critical member can be attributed to “redundancy”. However, “redundancy”, also indicated as the post member failure behavior of long-span bridges is not well understood and is not explicitly considered, especially for long-span truss bridges. As one of the most famous collapse events that took place recently, collapse of the I-35W truss bridge has demonstrated the vulnerabilities of long-span truss bridges, and their societal and economic consequences under the abnormal events, such as …


Macro - And Microstructure Evaluation And Field Applications Of Concrete With Recycled Glass Pozzolan, Marija Krstic Jan 2020

Macro - And Microstructure Evaluation And Field Applications Of Concrete With Recycled Glass Pozzolan, Marija Krstic

Dissertations and Theses

Concrete is the most used material in the world, second only to water. Conventional concrete is produced with Portland cement (PC). The production of cement is an energy intensive operation that has raised significant environmental concerns, since one ton of cement generates an equal ton of CO2. In the USA about 90 million tons of cement are used annually, with 3 million tons used in New York. Most contemporary concrete applications for buildings and infrastructure use high-performance concrete (HPC) mixtures which are produced by replacing a percentage of cement with supplementary cementitious materials (SCMs), consisting mainly of fly-ash …


Decision-Making In Reuse Of Highway Bridge Foundations, Ehssan Hoomaan Jan 2020

Decision-Making In Reuse Of Highway Bridge Foundations, Ehssan Hoomaan

Dissertations and Theses

According to the 2019 National Bridge Inventory data from Federal Highway Administration, the average age of highway bridges in the U.S.A. is 45 years, with almost 43% of existing highway bridges being older than 50 years, and eight percent of all U.S. national highway bridges being in poor condition. Foundation and substructure of existing highway bridges (over land and water) may have significant functional values even after being under service for decades. Reusing an existing bridge foundation during the reconstruction of a bridge (e.g., major rehabilitation, retrofitting, replacement of superstructure and substructure, and addition/removal of a span) has the potential …


Slender Frp Elements As Discrete Reinforcement For Concrete, Yuan Tian Jan 2020

Slender Frp Elements As Discrete Reinforcement For Concrete, Yuan Tian

Dissertations and Theses

This dissertation presents a study that led to the development of slender elements that look like fibers used for reinforcing concrete but with a very different reinforcing mechanism. These elements, referred to as “Needles” are very rigid and strong; when intersected by growing cracks in concrete under heavy and increasing loads, they do not break and deform minimally. In the present work major steps were taken to understand the reinforcing mechanism of Needles. In addition, to investigate the influence of Needles on the mechanical performance of concrete incorporating Needles, at both material and structural levels, a series of laboratory experiments …


Computational Fluid Dynamics Simulation Of Rain-Wind-Induced Vibration Of Stay Cables, Hongfan Wang Jan 2020

Computational Fluid Dynamics Simulation Of Rain-Wind-Induced Vibration Of Stay Cables, Hongfan Wang

Dissertations and Theses

Due to the large amplitude, frequent occurrence and severe consequences, the rain-wind induced vibration (RWIV) of stay cables in cable-stayed bridges has been investigated extensively by researchers around the world. However, the underlying excitation mechanism is still unclear. Recently, computational fluid dynamics (CFD) simulation has been widely applied in the research on structure vibrations due to dynamic wind loads, with great potential as an alternative tool for wind tunnel testing. It has also been adopted to investigate the RWIV, but only a few studies have been conducted so far. Furthermore, most of the CFD simulations reported in literatures are two-dimensional, …


Development Of Electromagnetic Friction Dampers For Improving Seismic Performance Of Civil Structures, Mohsen Amjadian Jan 2019

Development Of Electromagnetic Friction Dampers For Improving Seismic Performance Of Civil Structures, Mohsen Amjadian

Dissertations and Theses

Energy dissipation is critical to limiting damage to civil structures subjected to extreme natural events such as earthquakes. Friction is one of the most reliable mechanisms of energy dissipation that has been utilized extensively in friction dampers to improve seismic performance of civil structures. Friction dampers are well-known for having a highly nonlinear hysteretic behavior caused by stick-slip motion at low velocities, a phenomenon that is inherent in friction and increases the acceleration response of the structure under control unfavorably, in spite of the fact that the displacement is generally reduced because of the energy dissipation. This increase in acceleration …


Application Of Multi-Hazard Seismic-Blast Detailing For Highway Bridges, Dominique Morton Torres Jan 2013

Application Of Multi-Hazard Seismic-Blast Detailing For Highway Bridges, Dominique Morton Torres

Dissertations and Theses

The increase of worldwide terrorist attacks on public transportation has heightened our concerns of protecting the nation’s transportation infrastructure. Highway bridges are an attractive target for terrorist attacks due to ease of accessibility and their overall importance to society. The primary objective of this research is to investigate multi-hazard seismic-blast correlations of blast-induced bridge components through numerical simulations of a high-precision finite element model of a typical highway bridge in New York. Seismic-detailing for blast loading on bridges has been investigated to study the correlations between seismic design for blast load effects. High-precision 3D Finite Element models of bridges detailed …