Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Space Vehicles

Aerospace Engineering

Cross sectional area

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Feasibility Of Cubesat Formation Flight Using Rotation To Achieve Differential Drag, Skyler M. Shuford Jun 2013

Feasibility Of Cubesat Formation Flight Using Rotation To Achieve Differential Drag, Skyler M. Shuford

Aerospace Engineering

This paper presents the results of a study conducted to understand the feasibility of CubeSat formation flight. The mechanism for separation and formation studied was differential drag, achieved by rotating the CubeSats to give them different cross-sectional areas. Intuitively, lower altitude orbits provide much higher separation effects. Although the most influential orbital effects occur with maximum and minimum cross-sectional areas, an attitude-controlled and a tumbling CubeSat may provide enough differential drag to meet separation requirements of a mission. Formation flight is possible, but due to the non-linearity of the system, gain scheduling may be the most effective method of long …