Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials

2015

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 51

Full-Text Articles in Engineering

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio Dec 2015

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio

Nebraska Center for Energy Sciences Research: Publications

We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case …


Ellipsometric Characterization Of Silicon And Carbon Junctions For Advanced Electronics, Alexander G. Boosalis Dec 2015

Ellipsometric Characterization Of Silicon And Carbon Junctions For Advanced Electronics, Alexander G. Boosalis

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Ellipsometry has long been a valuable technique for the optical characterization of layered systems and thin films. While simple systems like epitaxial silicon dioxide are easily characterized, complex systems of silicon and carbon junctions have proven difficult to analyze. Traditional model dielectric functions for layered silicon homojunctions, a system with a similar structure to modern transistors, often have correlated parameters during ellipsometric data analysis. Similarly, epitaxial graphene as grown from thermal sublimation of silicon from silicon carbide or through chemical vapor deposition, tend to have model dielectric function parameters that correlate with the optical thickness of the graphene due to …


Doping Plasmon-Enhanced Tio2 With Zirconia To Improve Solar Energy Harvesting In Dye-Sensitized Solar Cells, Anastasia Pasche Dec 2015

Doping Plasmon-Enhanced Tio2 With Zirconia To Improve Solar Energy Harvesting In Dye-Sensitized Solar Cells, Anastasia Pasche

Electronic Thesis and Dissertation Repository

Solar energy is a promising solution towards meeting the world’s ever-growing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic-inorganic solar cells with potential for commercial application, but are plagued by inefficiency due to their poor sunlight absorption. Silver nanoparticles have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance causes local hot spots, resulting in cell deterioration. This thesis studies the mitigation of thermal energy loss of plasmon-enhanced DSSCs by the co-incorporation of zirconia, a well-known thermostabilizer, into the cell’s photoactive material. TiO2 was also synthesized using green bio-sourced solvents in supercritical CO2 to compare …


Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das Dec 2015

Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das

Doctoral Dissertations

The first part of this dissertation focuses on interface and morphology engineering in polymer- and small molecule-based organic solar cells. High-performance devices were fabricated, and the device performance was correlated with nanoscale structures using various electrical, spectroscopic and microscopic characterization techniques, providing guidelines for high-efficiency cell design.

The second part focuses on perovskite solar cells (PSCs), an emerging photovoltaic technology with skyrocketing rise in power conversion efficiency (PCE) and currently showing comparable PCEs with those of existing thin film photovoltaic technologies such as CIGS and CdTe. Fabrication of large-area PSCs without compromising reproducibility and device PCE requires formation of dense, …


A Platform For Fast Detection Of Let-7 Micro Rna Using Polyaniline Fluorescence And Image Analysis Techniques, Partha P. Sengupta Dec 2015

A Platform For Fast Detection Of Let-7 Micro Rna Using Polyaniline Fluorescence And Image Analysis Techniques, Partha P. Sengupta

Master's Theses

The project describes a new strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10-11 M (10 pM) of target oligonucleotides could be detected within 15 minutes of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to …


Incorporation Of High-K Hfo2 Thin Films In A-Igzo Thin Film Transistor Devices, Aaron Hamilton Bales Dec 2015

Incorporation Of High-K Hfo2 Thin Films In A-Igzo Thin Film Transistor Devices, Aaron Hamilton Bales

Masters Theses

In this study, HfO2 [hafnium oxide] thin films are investigated extensively as part of indium gallium zinc oxide (IGZO) thin film transistor (TFT) devices. They are incorporated into the TFTs, both as a gate insulator and a passivation layer. First, the HfO2 [hafnium oxide] films themselves are investigated through an annealing study and through I-V and C-V measurements. Then, HfO2 [hafnium oxide] is suggested as a replacement for commonly used SiO2 [silicon dioxide] gate insulator, as it has a dielectric constant that is 4 – 6 times higher. This higher dielectric constant allows for comparable TFT performance at a lower …


Imaging Thermal Conductivity With Nanoscale Resolution Using A Scanning Spin Probe, Abdelghani Laraoui, Halley Aycock-Rizzo, Yang Gao, Xi Lu, Elisa Riedo, Carlos A. Meriles Nov 2015

Imaging Thermal Conductivity With Nanoscale Resolution Using A Scanning Spin Probe, Abdelghani Laraoui, Halley Aycock-Rizzo, Yang Gao, Xi Lu, Elisa Riedo, Carlos A. Meriles

Advanced Science Research Center

The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. …


Volatile Condensible Material Deposition In Leo Simulated Environment, Jinya Pu Nov 2015

Volatile Condensible Material Deposition In Leo Simulated Environment, Jinya Pu

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Room Temperature Vulcanized (RTV) silicone and compounds are widely used in outer-space for bonding or potting spacecraft components. In geosynchronous equatorial orbit (GEO), the silicone may outgas species which can condense on optically sensitive surfaces and degrade their performance, therefore shortening the lifetime of spacecraft. In low-earth-orbit (LEO), the silicone rubber is subject to an energetic and corrosive environment. Atomic oxygen (AO) and ultraviolet radiation can cause abrasion and degradation of the silicone rubber, cause changes in existing condensed VCM films and affect the properties of VCM films condensing in this atmosphere. Experiments were performed to simulate GEO conditions. In …


Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous Nov 2015

Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous

Doctoral Dissertations

An optimal nanoscale phase separation between the donor (generally, a conjugated polymer) and the acceptor (generally, a fullerene derivative) materials is one of the major requirements for obtaining high efficiency organic photovoltaic (OPV) device. Recent methods of controlling such nanostructure morphology in a bulkheterojunction (BHJ) OPV device involve addition of a small amount of solvent additive to the donor and acceptor solutions. The idea is to retain the acceptor materials into the solution for a longer period of time during the film solidification process, thus allowing the donor material to crystallize earlier. The ultimate morphology resulting from the solvent casting …


Molecular Helices As Electron Acceptors In High-Performance Bulk Heterojunction Solar Cells, Yu Zhong, M. Tuan Trinh, Rongsheng Chen, Geoffrey E. Purdum, Petr P. Khlyabich, Melda Sezen, Seokjoon Oh, Haiming Zhu, Brandon Fowler, Boyuan Zhang, Wei Wang, Chang-Yong Nam, Matthew Y. Sfeir, Charles T. Black, Michael L. Steigerwald, Yueh-Lin Loo, Fay Ng, X.-Y. Zhu, Colin Nuckolls Sep 2015

Molecular Helices As Electron Acceptors In High-Performance Bulk Heterojunction Solar Cells, Yu Zhong, M. Tuan Trinh, Rongsheng Chen, Geoffrey E. Purdum, Petr P. Khlyabich, Melda Sezen, Seokjoon Oh, Haiming Zhu, Brandon Fowler, Boyuan Zhang, Wei Wang, Chang-Yong Nam, Matthew Y. Sfeir, Charles T. Black, Michael L. Steigerwald, Yueh-Lin Loo, Fay Ng, X.-Y. Zhu, Colin Nuckolls

Publications and Research

Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed …


Mechanical And Electro-Mechanical Properties Of Crystalline Organic Semiconductors, Marcos A. Reyes-Martinez Aug 2015

Mechanical And Electro-Mechanical Properties Of Crystalline Organic Semiconductors, Marcos A. Reyes-Martinez

Doctoral Dissertations

The study of the physical properties of organic crystalline semiconductors has allowed the advent of a new generation of high-performance organic electronic devices. Exceptional charge-transport properties and recent developments in large-area patterning techniques make organic single crystals (OSCs) excellent candidates for their utilization in the next-generation of electronic technologies, including flexible and conformable organic thin-film devices. In spite of the profound knowledge of the structural and electrical properties of OSCs, knowledge of the mechanical properties and the effects of mechanical strain is almost non-existent. This dissertation aims to bring new understanding of the intrinsic mechanical properties and the effect of …


Ion Irradiation Induced Damage And Dynamic Recovery In Single Crystal Silicon Carbide And Strontium Titanate, Haizhou Xue Aug 2015

Ion Irradiation Induced Damage And Dynamic Recovery In Single Crystal Silicon Carbide And Strontium Titanate, Haizhou Xue

Doctoral Dissertations

The objective of this thesis work is to gain better understanding of ion-solid interaction in the energy regime where electronic and nuclear energy loss are comparable. Such responses of materials to ion irradiations are of fundamental importance for micro-electronics and nuclear applications. The ion irradiation induced modification for the crystal structure, the physical and chemical properties etc. may strongly affect the performance of functional materials that needs to be better understood.

Experimentally, ion irradiation induced damage accumulation and dynamic recovery in SiC [silicon carbide] and SrTiO3 [strontium titanate] were studied in this dissertation project. Five chapters are presented: Firstly, …


Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin Aug 2015

Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin

Master's Theses

Organic thin films can be readily mass-produced through solution-based fabrication methods including ink-printing and solution-casting because their light weight, flexibility, and inexpensive sources. Their applications range from organic field-effect transistors (OFET), organic solar cells (OSC), to organic light emitting diodes (OLEDs). Compared with pure component films, binary organic thin films (BOTF) allows for novel characteristics and specialized features to handle more demanding tasks. Due to the complex intermolecular interactions in BOTF, various microscopic phases with different morphological and electronic properties may be formed and this information is difficult to extract through conventional bulk measurements.

Organic thin films can be readily …


Efficiency Enhancement In Solution Processed Organic And Organic-Inorganic Hybrid Perovskite Solar Cells, Zhengguo Xiao Jul 2015

Efficiency Enhancement In Solution Processed Organic And Organic-Inorganic Hybrid Perovskite Solar Cells, Zhengguo Xiao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Solution processed thin film photovoltaic devices are one of the most promising renewable energy sources. Organic solar cells have been intensively studied due to their advantages of light-weight, flexibility and low-cost materials and manufacturing. The organic-inorganic hybrid perovskite materials have recently shown great potential application in solar cells. The PCE increased dramatically from 3.8% in 2009 to a certified efficiency of 20.1% in 2014. In this dissertation, we focus on the efficiency enhancement for solution processed organic and organic-inorganic solar cells.

In Chapter 2, I demonstrated that the crystallinity of the ferroelectric polymer P(VDF-TrFE) at the organic active layer/ electrode …


Spectrally-Resolved Imaging Of The Transverse Modes In Multimode Vcsels, Stephan A. Misak, Dan G. Dugmore, Kirsten A. Middleton, Evan R. Hale, Kelly R. Farner, Kent D. Choquette, Paul O. Leisher Jun 2015

Spectrally-Resolved Imaging Of The Transverse Modes In Multimode Vcsels, Stephan A. Misak, Dan G. Dugmore, Kirsten A. Middleton, Evan R. Hale, Kelly R. Farner, Kent D. Choquette, Paul O. Leisher

Rose-Hulman Undergraduate Research Publications

Vertical-cavity surface-emitting lasers (VCSELs) enable a range of applications such as data transmission, trace sensing, atomic clocks, and optical mice. For many of these applications, the output power and beam quality are both critical (i.e. high output power with good beam quality is desired). Multi-mode VCSELs offer much higher power than single-mode devices, but this comes at the expense of lower beam quality. Directly observing the resolved mode structure of multi-mode VCSELs would enable engineers to better understand the underlying physics and help them to develop multi-mode devices with improved beam quality. In this work, a low-cost, high-resolution (<3 >pm) …


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer reduced sheet resistance in low AgNW …


Effect Of Surfactant Architecture On Conformational Transitions Of Conjugated Polyelectrolytes, Greg A. Braggin Jun 2015

Effect Of Surfactant Architecture On Conformational Transitions Of Conjugated Polyelectrolytes, Greg A. Braggin

Master's Theses

Water soluble conjugated polyelectrolytes (CPEs), which fall under the category of conductive polymers, possess numerous advantages over other conductive materials for the fabrication of electronic devices. Namely, the processing of water soluble conjugated polyelectrolytes into thin film electronic devices is much less costly as compared to the processing of inorganic materials. Moreover, the handling of conjugated polyelectrolytes can be performed in a much more environmentally friendly manner than in the processing of other conjugated polymers because conjugated polyelectrolytes are water soluble, whereas other polymers will only dissolve in toxic organic solvents. The processing of electronic devices containing inorganic constituents such …


Photocatalytic Mineralization Of Phenol On Fluidized Titanium Oxide-Coated Silica Gel, Guillermo J. Rincon May 2015

Photocatalytic Mineralization Of Phenol On Fluidized Titanium Oxide-Coated Silica Gel, Guillermo J. Rincon

University of New Orleans Theses and Dissertations

A bench-scale tubular reactor with recirculation was built in order to study the efficiency of the photocatalytic oxidation of phenol on fluidized titanium oxide-coated silica gel beads. A UV-C lamp placed along the central vertical axes of the reactor was used as source of photons. A bed of silica gel beads was fluidized by means of fluid recirculation and forced to follow upward helical flow around the lamp. Anatase was successfully synthetized on silica gel particles of average diameters 224, 357 and 461 µm, as confirmed by scanning electron micrographs, through a sol-gel technique using a titanium (iv)isopropoxide / hydrochloric …


Variability In The Fabrication Process Of Bivo4 Photoanodes, Lauren M. Phillips May 2015

Variability In The Fabrication Process Of Bivo4 Photoanodes, Lauren M. Phillips

Senior Honors Projects, 2010-2019

Hydrogen gas produced from the photoelectrochemical (PEC) decomposition of water, using sunlight as an energy source, is a promising approach for sustainable fuel production. This decomposition of water is also called artificial photosynthesis. A device that accomplished this process is sometimes call an artificial leaf, which mimics nature inasmuch as it stores solar energy as a chemical fuel (e.g., hydrogen) by splitting water, in this way imitating natural photosynthesis. In 2009, Dr. Keith Holland and Dr. David Lawrence of James Madison University (JMU) initiated a research program to investigate materials for the photoelectrochemical decomposition of water into hydrogen and oxygen, …


Bulk Heterojunctions In Photovoltaic Devices, Ondrej Edward Dyck May 2015

Bulk Heterojunctions In Photovoltaic Devices, Ondrej Edward Dyck

Doctoral Dissertations

Current solar cells, on the market today, have little room for improved efficiency or cost reduction. Part of this is due to the costly manufacture of high purity silicon and the current fabrication methods for solar cells. Solution processable solar cells would mark a great stride forward to cost reduction. If such cells can be demonstrated to be efficient enough and stable enough it would be a turning point in history. However, solution processable devices still need much work before they can compete in the market. This text addresses characterization problems in the TEM, covers a study dealing with optimization …


Discovery And Improvement Of Novel Metal Halide Scintillators For Radiation Detection Applications, Hua Wei May 2015

Discovery And Improvement Of Novel Metal Halide Scintillators For Radiation Detection Applications, Hua Wei

Doctoral Dissertations

Scintillation materials are in great demand for radiation detection applications. In this dissertation work, a series of new metal halide scintillation materials are presented. A comprehensive procedure of candidate scintillator screening, single crystal growth, scintillation properties characterizations, and scintillation mechanism investigations are established. The potential candidate materials are firstly synthesized by melt-freeze method to form polycrystalline. The scintillation properties of the polycrystalline specimen are characterized to select the most promising scintillators. The selected scintillators are grown into single crystals. Protocols including raw materials purification, materials pre-mixing, ampoule design, and furnace manipulation are developed to improve the scintillators’ performance.

Cerium-doped ternary …


Electronic Energy Loss Of Heavy Ions And Its Effects In Ceramics, Ke Jin May 2015

Electronic Energy Loss Of Heavy Ions And Its Effects In Ceramics, Ke Jin

Doctoral Dissertations

Energy loss of medium energy heavy ions (i.e. Cl, Br, I, and Au) in thin compound foils containing light elements (i.e. silicon carbide and silicon dioxide) is directly measured using a time-of-flight elastic recoil detection analysis (ToF-ERDA) technique. An improved data analysis procedure is proposed to provide the experimentally determined electronic stopping powers. This analysis procedure requires reliable predictions of nuclear stopping. Thus, the nuclear stopping predicted by the Stopping and Range of Ions in Matter (SRIM) code is validated by measuring the angular distribution of 1 MeV Au ions after penetrating a thin silicon nitride foil, using a secondary …


Generalized Ellipsometry Analysis Of Anisotropic Nanoporous Media: Polymer-Infiltrated Nanocolumnar And Inverse-Column Polymeric Films, Dan Liang May 2015

Generalized Ellipsometry Analysis Of Anisotropic Nanoporous Media: Polymer-Infiltrated Nanocolumnar And Inverse-Column Polymeric Films, Dan Liang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Characterization of the structural and optical properties is a subject of significance for nanoporous material research. However, it remains a challenge to find non-destructive methods for investigating the anisotropy of porous thin films with three-dimensional nanostructures. In this thesis, a generalized ellipsometry (GE) analysis approach is employed to study two types of anisotropic nanoporous media: slanted columnar thin films (SCTFs) with polymer infiltration and inverse-SCTF polymeric films. The thesis presents the physical properties obtained from GE analysis, including porosity, columnar shape, principal optical constants, birefringence, etc.

The thesis reports on using a GE analysis approach, combining the homogeneous biaxial layer …


Interstitial Silicon Ions In Rutile Tio2 Crystals, Eric M. Golden, Nancy C. Giles, Shan Yang, Larry E. Halliburton Apr 2015

Interstitial Silicon Ions In Rutile Tio2 Crystals, Eric M. Golden, Nancy C. Giles, Shan Yang, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to identify a new and unique photoactive silicon-related point defect in single crystals of rutile TiO2. The importance of this defect lies in its assignment to interstitial silicon ions and the unexpected establishment of silicon impurities as a major hole trap in TiO2. Principal g values of this new S=1/2 center are 1.9159, 1.9377, and 1.9668 with principal axes along the [¯110],[001], and [110] directions, respectively. Hyperfine structure in the EPR spectrum shows the unpaired spin interacting equally with two Ti nuclei and unequally with two Si nuclei. These silicon …


Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur E Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh Apr 2015

Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur E Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh

Mikhail Vasiliev

Magneto-optic (MO) garnets are used in a range of applications in nanophotonics, integrated optics, communications and imaging. Bi-substituted iron garnets of different compositions are the most useful class of materials in applied magneto- optics due to their excellent MO properties (large Faraday effect) and record-high MO figure of merit among all semi- transparent dielectrics. It is highly desirable to synthesise garnets which possess simultaneously a high MO figure of merit and large uniaxial magnetic anisotropy. However, the simultaneous optimization of several material properties and parameters can be difficult in single-layer garnet thin films, and it is also challenging to prepare …


Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur E Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh Apr 2015

Recent Developments In Magneto-Optic Garnet-Type Thin-Film Materials Synthesis, Mohammad Nur E Alam, Mikhail Vasiliev, Viacheslav Kotov, Kamal Alameh

Mikhail Vasiliev

Magneto-optic (MO) garnets are used in a range of applications in nanophotonics, integrated optics, communications and imaging. Bi-substituted iron garnets of different compositions are the most useful class of materials in applied magneto- optics due to their excellent MO properties (large Faraday effect) and record-high MO figure of merit among all semi- transparent dielectrics. It is highly desirable to synthesise garnets which possess simultaneously a high MO figure of merit and large uniaxial magnetic anisotropy. However, the simultaneous optimization of several material properties and parameters can be difficult in single-layer garnet thin films, and it is also challenging to prepare …


Towards The Perfect Optical Fiber, John Ballato Apr 2015

Towards The Perfect Optical Fiber, John Ballato

Journal of the South Carolina Academy of Science

Optical fibers are being used in an ever more diverse array of applications today. Many of these modern applications are in high-power and, particularly, high power-per-unit-bandwidth systems where optical nonlinearities historically have not limited overall performance. Today, however, nominally weak effects, such as stimulated Brillouin scattering (SBS), are restricting continued scaling to higher optical powers. To address these limitations, the optical fiber industry has focused on fiber geometry-related solutions such as large mode area (LMA) designs. However, since all linear and nonlinear optical phenomena are fundamentally materials-based in origin, this paper identifies material solutions to present and future performance limitations …


Magnetic Properties Of Crystals Of La5Mo4-XTXO16, S. Lofland, Jason Hattrick-Simpers, K. Ramanujachary, W. Mccarroll Mar 2015

Magnetic Properties Of Crystals Of La5Mo4-XTXO16, S. Lofland, Jason Hattrick-Simpers, K. Ramanujachary, W. Mccarroll

Jason R. Hattrick-Simpers

No abstract provided.


Applications Of High Throughput Screening Tools For Thermoelectric Materials, W. Wong-Ng, H. Joress, J. Martin, Y. Yan, M. Otani, E. Thomas, M. Green, Jason Hattrick-Simpers Mar 2015

Applications Of High Throughput Screening Tools For Thermoelectric Materials, W. Wong-Ng, H. Joress, J. Martin, Y. Yan, M. Otani, E. Thomas, M. Green, Jason Hattrick-Simpers

Jason R. Hattrick-Simpers

No abstract provided.


Data Management And Visualization Of X-Ray Diffraction Spectra From Thin Film Ternary Composition Spreads, I. Takeuchi, C. Long, O. Famodu, M. Murakami, Jason Hattrick-Simpers, G. Rubloff, M. Stukowski, K. Rajan Mar 2015

Data Management And Visualization Of X-Ray Diffraction Spectra From Thin Film Ternary Composition Spreads, I. Takeuchi, C. Long, O. Famodu, M. Murakami, Jason Hattrick-Simpers, G. Rubloff, M. Stukowski, K. Rajan

Jason R. Hattrick-Simpers

We discuss techniques for managing and visualizing x-ray diffraction spectrum data for thin film composition spreads which map large fractions of ternary compositional phase diagrams. An in-house x-ray microdiffractometer is used to obtain spectra from over 500 different compositions on an individual spread. The MATLAB software is used to quickly organize the data and create various plots from which one can quickly grasp different information regarding structural and phase changes across the composition spreads. Such exercises are valuable in rapidly assessing the “overall” picture of the structural evolution across phase diagrams before focusing in on specific composition regions for detailed …