Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials

Materials Engineering

AFM

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer reduced sheet resistance in low AgNW …


Design And Implementation Of A Micro Force Displacement System, Evan Cate Jun 2013

Design And Implementation Of A Micro Force Displacement System, Evan Cate

Materials Engineering

The design and implementation of a micro-force displacement system was completed to test various Micro-Electro-Mechanical Systems (MEMS) devices including silicon diaphragms and cantilevers. The system utilizes a World Precision Instruments Fort 10g force transducer attached to a World Precession Instruments TBM4M amplifier. A Keithley 2400 source meter provided data acquisition of the force component of the system. A micro prober tip was utilized as the testing probe attached to the force transducer with a tip radius of 5um. The displacement of samples was measured using a Newport M433 linear stage driven by a Newport ESP300 motion controller (force readings at …