Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials

Master's Theses

Microfluidics

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Inquiry Of Graphene Electronic Fabrication, John Rausch Greene Sep 2016

Inquiry Of Graphene Electronic Fabrication, John Rausch Greene

Master's Theses

Graphene electronics represent a developing field where many material properties and devices characteristics are still unknown. Researching several possible fabrication processes creates a fabrication process using resources found at Cal Poly a local industry sponsor. The project attempts to produce a graphene network in the shape of a fractal Sierpinski carpet. The fractal geometry proves that PDMS microfluidic channels produce the fine feature dimensions desired during graphene oxide deposit. Thermal reduction then reduces the graphene oxide into a purified state of graphene. Issues arise during thermal reduction because of excessive oxygen content in the furnace. The excess oxygen results in …


Development Of A High Precision Quantum Dot Synthesis Method Utilizing A Microfluidic Reactor And In-Line Fluorescence Flow Cell, William Henry Lafferty Nov 2014

Development Of A High Precision Quantum Dot Synthesis Method Utilizing A Microfluidic Reactor And In-Line Fluorescence Flow Cell, William Henry Lafferty

Master's Theses

Quantum dots show great potential for use as spectral converters in solar cells, lighting applications, and biological imaging. These applications require precise control of quantum dot size to maximize performance. The quality, size, and fluorescence of quantum dots depend on parameters that are difficult to control using traditional batch synthesis processes. An alternative, high precision process was developed for the synthesis of cadmium-selenide quantum dots using a microfluidic reactor and fluorescence flow cell. The process required creating separate cadmium and selenium precursors that were then mixed in a nitrogen environment at 17°C. Using an NE-300® syringe pump, the solution …


The Fabrication & Characterization Of An Electrokinetic Microfluidic Pump From Su-8, A Negative Epoxy-Based Photoresist, Nash Anderson Jun 2013

The Fabrication & Characterization Of An Electrokinetic Microfluidic Pump From Su-8, A Negative Epoxy-Based Photoresist, Nash Anderson

Master's Theses

Microfluidics refers to manipulation, precise control, and behavior of fluids at the micro and nanoliter scales. It has entered the realm of science as a way to precisely measure or mix small amounts of fluid to perform highly controlled reactions. Glass and polydimethylsiloxane (PDMS) are common materials used to create microfluidic devices; however, glass is difficult to process and PDMS is relatively hydrophobic. In this study, SU-8, an epoxy based (negative) photoresist was used to create various electrokinetic microfluidic chips. SU-8 is commonly used in microelectromechanical design. Spin coating of various SU-8 formulations allows for 1 μm to 100 μm …


The Design And Fabrication Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Robert Gonsalves Feb 2012

The Design And Fabrication Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Robert Gonsalves

Master's Theses

A microfluidic reactor for synthesizing cadmium selenide (CdSe) quantum dots (QDs) was synthesized out of a silicon wafer and Pyrex glass. Microfabrication techniques were used to etch channels into the silicon wafer. Holes were wet-drilled into the Pyrex glass using a diamond-tip drill bit. The Pyrex wafer was anodically bonded to the etched silicon wafer to enclose the microfluidic reactor. Conditions for anodic bonding were created by exposing the stacked substrates to 300V at ~350oC under 5.46N of force. A syringe containing a room temperature CdSe solution was interfaced to the microfluidic reactor by using Poly (dimethylsiloxane) (PDMS) as an …


Development Of A Low Cost Handheld Microfluidic Phosphate Colorimeter For Water Quality Analysis, Sean C. Kaylor Aug 2009

Development Of A Low Cost Handheld Microfluidic Phosphate Colorimeter For Water Quality Analysis, Sean C. Kaylor

Master's Theses

This thesis describes the design, fabrication, and testing process for a microfluidic phosphate colorimeter utilized for water quality analysis. The device can be powered by, and interfaced for data collection with, a common cell phone or laptop to dramatically reduce costs. Unlike commercially available colorimeters, this device does not require the user to measure or mix sample and reagent. A disposable poly(dimethylsiloxane) (PDMS) microfluid chip, powered by an absorption pumping mechanism, was used to draw water samples, mix the sample at a specific ratio with a molybdovanadate reagent, and load both fluids into an onboard cuvette for colorimetric analysis. A …