Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler Dec 2023

Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler

Mechanical Engineering ETDs

This study presents a flexible sensor/harvester device to be used in both electromagnetic sensing and energy harvesting applications for smart grids. When a current passes through a wire, the sensor detects the magnetic field created by that current. The sensor magnet interacts with the wire magnetic field resulting in a transfer of energy through the piezoelectric cantilever. Piezoelectric, conductive, magnetic, and magnetostrictive composite thin films were prepared to fabricate this device.

Initially, the magnet of the cantilever was optimized considering its shape, thickness, length, taper angle etc. via both simulations and experiments. Peak to peak voltage versus cantilever position graph …


Carrier Dynamics In Green Iii-Nitride Leds Using Small-Signal Electroluminescence, Xuefeng Li Nov 2023

Carrier Dynamics In Green Iii-Nitride Leds Using Small-Signal Electroluminescence, Xuefeng Li

Optical Science and Engineering ETDs

Solid-state lighting has achieved significant success over the past two decades, but the low quantum efficiency of green LEDs (i.e., the “green gap”) remains a barrier to full red-green-blue (RGB) displays in numerous applications. Combating efficiency reduction in longer-wavelength LEDs requires understanding the relative roles of intrinsic effects (e.g., wave-function overlap, carrier-current density relationship, phase-space filling (PSF)) vs. extrinsic effects (e.g., material degradation due to increased defect density, compositional inhomogeneities, etc.). A systematic study of the carrier dynamics in InGaN/GaN LEDs is very important for understanding the origin of the green gap and for providing solutions to improve the efficiency …


Characterization Analysis And Design Of Mid-Wave Infrared Iii- V-Based Type-Ii Superlattice Nbn Photodetectors For Space Applications, Alexander Timothy Newell Nov 2023

Characterization Analysis And Design Of Mid-Wave Infrared Iii- V-Based Type-Ii Superlattice Nbn Photodetectors For Space Applications, Alexander Timothy Newell

Electrical and Computer Engineering ETDs

The performance of the mid-wave infrared InGaAs/InAsSb nBn photodetector is investigated and its viability for space applications is assessed. Three structures are grown with unique absorber layer doping profiles via molecular beam epitaxy. Material and device characterizations are performed and analyzed to determine the effects of doping on fundamental material parameters and detector performance. Noise-equivalent irradiance is calculated to be a factor of 4x that of an ideal detector exhibiting Rule 07 dark current and 100% quantum efficiency, demonstrating high sensitivity. The structures are then irradiated with 63 MeV protons to evaluate the extent of performance degradation over the course …


Machine Learning Based Prediction Models For Silicon Heterojunction Solar Cell Optimization, Rahul Jaiswal May 2023

Machine Learning Based Prediction Models For Silicon Heterojunction Solar Cell Optimization, Rahul Jaiswal

Electrical and Computer Engineering ETDs

Silicon heterojunction solar cell of Heterojunction with Thin Intrinsic Layer (HIT) structure is a commercially available technology, and its market share will significantly increase by the next decade. With such a significant market share, any minor improvement in the device’s overall efficiency can be beneficial three folds - customer return on investment, industry revenue, and the overall carbon footprint (from manufacturing to recycling/ disposing of the device). Conventionally, device optimization for solar cells has been achieved using a hit & trial approach where multiple experiments are done to evaluate the best process conditions and device parameters. This approach has some …


Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin Dec 2022

Investigation Of Gaas Double Heterostructures For Photonic Heat Engines, Nathan Giannini-Hutchin

Optical Science and Engineering ETDs

The creation of a laser cooled semiconductor device has been a long sought achievement. GaAs-based devices have emerged as a promising candidate for the realization of this goal. Efforts to improve the efficiency of such devices have enabled the material to exhibit external quantum efficiencies (EQE, a measure of the probability that an excitation leads to the emission of a photon) of 99.5\%. Despite this impressive feat, a laser coolable device remains elusive.

To investigate the obstacles to such a device, the material characteristics of GaAs-based double heterostructures (DHS) are theoretically and experimentally examined. Through this study, a GaAs $\vert$ …


Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles Nov 2022

Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles

Mechanical Engineering ETDs

Lead zirconate titanate (PZT) has been a material of interest for sensor, actuator, and transducer applications in microelectromechanical systems (MEMS). This is due to their favorable piezoelectric, pyroelectric and ferroelectric properties. While various methods are available to deposit PZT thin films, radio frequency (RF) magnetron sputtering was selected to provide high quality PZT films with the added capability of batch processing. These sputter deposited PZT films were characterized to determine their internal film stress, Young’s modulus, composition, and structure. After characterization, the sputtered PZT samples were poled using corona poling and direct poling methods. As a means of comparison, commercially …


Interferometric Lithography- An Approach To Large Area And Cost Effective Nanopatterning, Vineeth Sasidharan Nov 2021

Interferometric Lithography- An Approach To Large Area And Cost Effective Nanopatterning, Vineeth Sasidharan

Optical Science and Engineering ETDs

In this dissertation interferometric lithography is approached in two different ways to address two important constraints of nanopatterning. One approach solves the problem of scaling up interferometric lithography to wafer scale (4 inch or larger) area. Through the second approach we have developed a nanopatterning technique based on interferometric lithography by using an inexpensive (~$100) diode laser as source, making interferometric lithography a very cost-effective technique.

Wafer-scale large-area nanopatterning was developed using an amplitude grating mask as a grating beam splitter along with spatial averaging of laser intensity by wobbling. The longitudinal and transverse coherence issues both are eased by …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng May 2020

The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng

Optical Science and Engineering ETDs

This dissertation describes the development of an all solid-state optical cryo-cooler. Crystals of 10% wt. ytterbium-doped yttrium lithium fluoride (Yb3+:YLF) are used to cool an infrared HgCdTe sensor payload to an absolute temperature below 135 K, equivalent to delta T equal 138 K below ambient. This record level of cooling is accomplished with a single stage, in a completely vibration-free environment, with a corresponding cooling power of 190 mW. This milestone is made possible by the design and fabrication of an undoped YLF thermal link that efficiently shields the payload with a non-right angle kink from intense anti-Stokes …


Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami Apr 2020

Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami

Optical Science and Engineering ETDs

This dissertation reports recent advances in mid-infrared (mid-IR) optical refrigeration and Radiation Balanced Lasers (RBLs). The first demonstration of optical refrigeration in Ho:YLF and Tm:YLF crystals as promising mid-IR laser cooling candidates is reported. Room temperature laser cooling efficiency of Tm- and Ho-doped crystals at different excitation polarization is measured and their external quantum efficiency and background absorption are extracted. Complete characterization of laser cooling samples is obtained via performing detailed low-temperature spectroscopic analysis, and their minimum achievable temperature as well as conditions to achieve laser cooling efficiency enhancement in mid-IR are investigated. By developing a Thulium-doped fiber amplifier, seeded …


Algorithmic Multi-Color Cmos Avalanche Photodiodes For Smart-Lighting Applications, Md Mottaleb Hossain May 2019

Algorithmic Multi-Color Cmos Avalanche Photodiodes For Smart-Lighting Applications, Md Mottaleb Hossain

Optical Science and Engineering ETDs

Future smart-lighting systems are expected to deliver adaptively color-tunable and high-quality lighting that is energy efficient while also offering integrated visible-light wireless communication services. To enable these systems at a commercial level, inexpensive and fast sensors with spectral-sensing capability are required. CMOS-compatible silicon avalanche photodiodes (APDs) can be an excellent fit to this problem due to their excellent sensitivity, high speeds and cost effectiveness; however, color sensing is a challenge without resorting to expensive spectral filters, as done in commercially. To address this challenge, we have recently designed and modeled a novel CMOS-compatible dual-junction APD. The device outputs two photocurrents …


Vertical Transport Study Of Iii-V Type-Ii Superlattices, Zahra Taghipour Nov 2018

Vertical Transport Study Of Iii-V Type-Ii Superlattices, Zahra Taghipour

Optical Science and Engineering ETDs

Type-II strained layer superlattice (T2SL) semiconductors hold great promise for mid- and long-wavelength infrared photodetectors. While T2SL-based materials have advanced significantly in the last three decades, an outstanding challenge to improve the T2SLs is to understand the carrier transport and its limitations, in particular along the superlattice growth layers.

In this dissertation, an overview of the current state-of-the-art InAs/GaSb T2SLs is presented. Fundamental semiconductor device equations and transport properties, including miniband conduction and the drift-diffusion parameters, are reviewed, and the fundamental limiting factors in carrier's transport are discussed. Furthermore, the standard method of electron-beam-induced current technique to measuring these parameters …


Controlled Nanomorphology Of Hybrid Organic/Inorganic Multi-Component Composites Through Cooperative Non-Covalent Interactions, Lingyao Meng Nov 2018

Controlled Nanomorphology Of Hybrid Organic/Inorganic Multi-Component Composites Through Cooperative Non-Covalent Interactions, Lingyao Meng

Shared Knowledge Conference

Hybrid organic–inorganic nanocomposite polymers, with inorganic nanoparticles embedded in organic matrix have emerged as a special category of multifunctional materials. With rational materials design, these hybrids can show the synergistic effect of the properties from both phases. Homogenous dispersion and orderly arrangement of the organic and inorganic components are key in their functionalities. By controlling the interface and corresponding interfacial interactions between the organic and inorganic entities, we have developed a logical approach to form stable and controlled hybrid nanofiber structures. We demonstrate the formation of hybrid polymer/quantum dots (or iron oxide nanoparticles) nanocomposites through non-covalent interactions (hydrogen bonding, ionic …


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble and …


Integration Of Thin Film Tpv Cells To Cvd Diamond Heat Spreaders, Emma J. Renteria Nov 2017

Integration Of Thin Film Tpv Cells To Cvd Diamond Heat Spreaders, Emma J. Renteria

Electrical and Computer Engineering ETDs

In this work, techniques to isolate thermophotovoltaic (TPV) devices from the growth substrate and their subsequent integration with Chemical Vapor Deposition (CVD) diamond heat spreaders will be discussed, with the envisioned goal of fabricating thermally managed cells. CVD diamond heat spreaders are a great option for thermal management of TPV cells. The key requirement, however, is the bonding of the TPV cell directly onto the diamond wafer without the presence of thick (>350 μm) growth substrates, which can offer significant thermal resistance.

The first approach is to release GaSb epitaxial layers from GaSb substrates. However, this is challenging due …


Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami Sep 2017

Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami

Physics & Astronomy ETDs

Nano-scale optoelectronic devices have gained significant attention in recent years. Among these devices are semiconductor nanowires, whose dimeters range from 100 to 200 nm. Semiconductor nanowires can be utilized in many different applications including light-emitting diodes and laser diodes. Higher surface to volume ratio makes nanowire-based structures potential candidates for the next generation of photodetectors, sensors, and solar cells. Core-shell light-emitting diodes based on selective-area growth of gallium nitride (GaN) nanowires provide a wide range of advantages. Among these advantages are access to non-polar m-plane sidewalls, higher active region area compared to conventional planar structures, and reduction of threading …


Investigating The Classical And Non-Classical Mechanical Properties Of Gan Nanowires, Mohammad Reza Zamani Kouhpanji May 2017

Investigating The Classical And Non-Classical Mechanical Properties Of Gan Nanowires, Mohammad Reza Zamani Kouhpanji

Electrical and Computer Engineering ETDs

Study and prediction of classical and non-classical mechanical properties of GaN is crucial due to the potential application of GaN nanowires (NWs) in piezoelectric, probe-based nanometrology, and nanolithography areas. GaN is mainly grown on sapphire substrates whose lattice constant and thermal expansion coefficient are significantly different from GaN. These discrepancies cause mechanical defects and high residual stresses and strains in GaN, which reduce its quantum efficiency.

Specifically, for nanoscale applications, the mechanical properties of materials differ significantly compared to the bulk properties due to size-effects. Therefore, it is essential to investigate the mechanical properties of GaN NWs using the non-classical …