Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials

Kennesaw State University

Conference

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Influence Of Al2o3 Passivation Layer Thickness On The Thermal Stability And Quality Of Mocvd-Grown Gan On Si, S M Atiqur Rahman, Manika Tun Nafisa, Zhe Chuan Feng, Benjamin Klein, Ian T. Ferguson May 2024

Influence Of Al2o3 Passivation Layer Thickness On The Thermal Stability And Quality Of Mocvd-Grown Gan On Si, S M Atiqur Rahman, Manika Tun Nafisa, Zhe Chuan Feng, Benjamin Klein, Ian T. Ferguson

Symposium of Student Scholars

This research delves into the significant impact of varying thicknesses of the Al2O3 passivation layer on the thermal stability and crystalline quality of GaN on Si structures, an essential aspect for the next generation of high-temperature electronic and optoelectronic devices. By adopting metal-organic chemical vapor deposition (MOCVD) for the growth process, we analyzed structures with different Al2O3 passivation layer thicknesses: none, 2 nm, 10 nm, and 20 nm, each built upon the GaN layer. Through Raman spectroscopy, we meticulously assessed the changes in the E2 (High) phonon mode's peak position and full width …


Raman Spectroscopy Of Gan On Si With Varied Thin Film Thickness For High-Temperature Semiconductor Devices, Manika Tun Nafisa Mar 2024

Raman Spectroscopy Of Gan On Si With Varied Thin Film Thickness For High-Temperature Semiconductor Devices, Manika Tun Nafisa

Symposium of Student Scholars

This study explores the potential of GaN on Si thin films as a promising material for high-temperature semiconductor devices, owing to its impressive thermal properties and performance characteristics. Two GaN on Si samples were grown using Metal Organic Chemical Vapor Deposition (MOCVD), with different film thicknesses, and their potential for high-temperature applications was comprehensively assessed by performing Raman spectroscopy at various temperature levels. The experimental results provided valuable insights into the material's behavior at elevated temperatures. At 300°C, the GaN E2 (High) peak showed a Raman shift at 562.38 cm⁻¹ for high-thickness samples and 561.49 cm⁻¹ for low-thickness samples. …