Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

A Generative Human-Robot Motion Retargeting Approach Using A Single Rgbd Sensor, Sen Wang, Xinxin Zuo, Runxiao Wang, Ruigang Yang Apr 2019

A Generative Human-Robot Motion Retargeting Approach Using A Single Rgbd Sensor, Sen Wang, Xinxin Zuo, Runxiao Wang, Ruigang Yang

Computer Science Faculty Publications

The goal of human-robot motion retargeting is to let a robot follow the movements performed by a human subject. Typically in previous approaches, the human poses are precomputed from a human pose tracking system, after which the explicit joint mapping strategies are specified to apply the estimated poses to a target robot. However, there is not any generic mapping strategy that we can use to map the human joint to robots with different kinds of configurations. In this paper, we present a novel motion retargeting approach that combines the human pose estimation and the motion retargeting procedure in a unified …


Evolving Expert Agent Parameters For Capture The Flag Agent In Xpilot, Gary Parker, Sarah Penrose Oct 2012

Evolving Expert Agent Parameters For Capture The Flag Agent In Xpilot, Gary Parker, Sarah Penrose

Computer Science Faculty Publications

Xpilot is an open source, 2d space combat game. Xpilot-AI allows a programmer to write scripts that control an agent playing a game of Xpilot. It provides a reasonable environment for testing learning systems for autonomous agents, both video game agents and robots. In previous work, a wide range of techniques have been used to develop controllers that are focused on the combat skills for an Xpilot agent. In this research, a Genetic Algorithm (GA) was used to evolve the parameters for an expert agent solving the more challenging problem of capture the flag.


Evolving Predator Control Programs For An Actual Hexapod Robot Predator, Gary Parker, Basar Gulcu Oct 2012

Evolving Predator Control Programs For An Actual Hexapod Robot Predator, Gary Parker, Basar Gulcu

Computer Science Faculty Publications

In the development of autonomous robots, control program learning systems are important since they allow the robots to adapt to changes in their surroundings. Evolutionary Computation (EC) is a method that is used widely in learning systems. In previous research, we used a Cyclic Genetic Algorithm (CGA), a form of EC, to evolve a simulated predator robot to test the effectiveness of a learning system in the predator/prey problem. The learned control program performed search, chase, and capture behavior using 64 sensor states relative to the nearest obstacle and the target, a simulated prey robot. In this paper, we present …


Fitness Biasing For The Box Pushing Task, Gary Parker, Jim O'Connor Oct 2011

Fitness Biasing For The Box Pushing Task, Gary Parker, Jim O'Connor

Computer Science Faculty Publications

Anytime Learning with Fitness Biasing has been shown in previous works to be an effective tool for evolving hexapod gaits. In this paper, we present the use of Anytime Learning with Fitness Biasing to evolve the controller for a robot learning the box pushing task. The robot that was built for this task, was measured to create an accurate model. The model was used in simulation to test the effectiveness of Anytime Learning with Fitness Biasing for the box pushing task. This work is the first step in new research where an automated system to test the viability of Fitness …