Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Dynamic Modeling, Parameter Estimation And Control Of A Leg Prosthesis Test Robot, Hanz Richter, Daniel J. Simon, William A. Smith, Sergey Samorezov Jan 2015

Dynamic Modeling, Parameter Estimation And Control Of A Leg Prosthesis Test Robot, Hanz Richter, Daniel J. Simon, William A. Smith, Sergey Samorezov

Electrical and Computer Engineering Faculty Publications

Robotic testing can facilitate the development of new concepts, designs and control systems for prosthetic limbs. Human subject test clearances, safety and the lack of repeatability associated with human trials can be reduced or eliminated with automated testing, and test modalities are possible which are dangerous or inconvenient to attempt with patients. This paper describes the development, modeling, parameter estimation and control of a robot capable of reproducing two degree-of-freedom hip motion in the sagittal plane. Hip vertical displacement and thigh angle motion profiles are applied to a transfemoral prosthesis attached to the robot. A treadmill is used as walking …


Semiactive Virtual Control Method For Robots With Regenerative Energy-Storing Joints, Hanz Richter, Daniel J. Simon, Antonie J. Van Den Bogert Jan 2014

Semiactive Virtual Control Method For Robots With Regenerative Energy-Storing Joints, Hanz Richter, Daniel J. Simon, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

A framework for modeling and control is introduced for robotic manipulators with a number of energetically self-contained semiactive joints. The control approach consists of three steps. First, a virtual control design is conducted by any suitable means, assuming a fully-actuated system. Then, virtual control inputs are matched by a parameter modulation law. Finally, the storage dynamics are shaped using design parameters. Storage dynamics coincide with the system's internal dynamics under exact virtual control matching. An internal energy balance equation and associated self-powered operation condition are given for the semiactive joints. This condition is a structural characteristic of the system and …


Fuzzy Robot Controller Tuning With Biogeography-Based Optimization, George Thomas, Paul Lozovyy, Daniel J. Simon Jun 2011

Fuzzy Robot Controller Tuning With Biogeography-Based Optimization, George Thomas, Paul Lozovyy, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Biogeography-based optimization (BBO) is an evolutionary algorithm (EA) based upon the models of biogeography, which describe the relationship between habitat suitability and the migration of species across habitats. In this work, we apply BBO to the problem of tuning the fuzzy tracking controller of mobile robots. This is an extension of previous work, in which we used BBO to tune a proportional-derivative (PD) controller for these robots. We show that BBO can successfully tune the shape of membership functions for a fuzzy controller with both simulation and real world experimental results.


Robotic Testing Of Proximal Tibio-Fibular Joint Kinematics For Measuring Instability Following Total Knee Arthroplasty, Wael K. Barsoum, Ho H. Lee, Trevor G. Murray, Robb Colbrunn, Alison K. Klika, S. Butler, Antonie J. Van Den Bogert Jan 2011

Robotic Testing Of Proximal Tibio-Fibular Joint Kinematics For Measuring Instability Following Total Knee Arthroplasty, Wael K. Barsoum, Ho H. Lee, Trevor G. Murray, Robb Colbrunn, Alison K. Klika, S. Butler, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Pain secondary to instability in total knee arthroplasty (TKA) has been shown to be major cause of early failure. In this study, we focused on the effect of instability in TKA on the proximal tibio-fibular joint (PTFJ). We used a robotics model to compare the biomechanics of the PTFJ in the native knee, an appropriately balanced TKA, and an unbalanced TKA. The tibia (n = 5) was mounted to a six-degree-of-freedom force/torque sensor and the femur was moved by a robotic manipulator. Motion at the PTFJ was recorded with a high-resolution digital camera system. After establishing a neutral position, …


Globally Optimal Periodic Robot Joint Trajectories, Daniel J. Simon Sep 1996

Globally Optimal Periodic Robot Joint Trajectories, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

This paper presents a new method for the planning of robot trajectories. The method presented assumes that joint-space knots have been generated from Cartesian knots by an inverse kinematics algorithm. The method is based on the globally optimal periodic interpolation scheme derived by Schoenberg, and thus is particularly suited for periodic robot motions. Of all possible periodic joint trajectories which pass through a specified set of knots, the trajectory derived in this paper is the ‘best’. The performance criterion used is the integral (over one period) of a combination of the square of the joint velocity and the square of …


Tolerance Specification Of Robot Kinematic Parameters Using An Experimental Design Technique, Y.H. Andrew Liou, Paul P. Lin, Richard R. Lindeke, Hsiang-Dih Chiang Jun 1993

Tolerance Specification Of Robot Kinematic Parameters Using An Experimental Design Technique, Y.H. Andrew Liou, Paul P. Lin, Richard R. Lindeke, Hsiang-Dih Chiang

Mechanical Engineering Faculty Publications

This paper presents the tolerance specification of robot kinematic parameters using the Taguchi method. The concept of employing inner and outer orthogonal arrays to identify the significant parameters and select the optimal tolerance range for each parameter is proposed. The performance measure based on signal-to-noise ratios (S/N) using the Taguchi method is validated by Monte Carlo simulations. Finally, a step-by-step tolerance specification methodology is developed and illustrated with a planar two-link manipulator and a five-degree-of-freedom Rhino robot.


The Application Of Neural Networks To Optimal Robot Trajectory Planning, Daniel J. Simon May 1993

The Application Of Neural Networks To Optimal Robot Trajectory Planning, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Interpolation of minimum jerk robot joint trajectories through an arbitrary number of knots is realized using a hardwired neural network. Minimum jerk joint trajectories are desirable for their similarity to human joint movements and their amenability to accurate tracking. The resultant trajectories are numerical rather than analytic functions of time. This application formulates the interpolation problem as a constrained quadratic minimization problem over a continuous joint angle domain and a discrete time domain. Time is discretized according to the robot controller rate. The neuron outputs define the joint angles (one neuron for each discrete value of time) and the Lagrange …


Suboptimal Robot Joint Interpolation Within User-Specified Knot Tolerances, Daniel J. Simon, Can Isik May 1993

Suboptimal Robot Joint Interpolation Within User-Specified Knot Tolerances, Daniel J. Simon, Can Isik

Electrical and Computer Engineering Faculty Publications

Approximation of a desired robot path can be accomplished by interpolating a curve through a sequence of joint-space knots. A smooth interpolated trajectory can be realized by using trigonometric splines. But, sometimes the joint trajectory is not required to exactly pass through the given knots. The knots may rather be centers of tolerances near which the trajectory is required to pass. In this article, we optimize trigonometric splines through a given set of knots subject to user-specified knot tolerances. The contribution of this article is the straightforward way in which intermediate constraints (i.e., knot angles) are incorporated into the parameter …


An Efficient Technique For Finding The Desired Global Optimum Of Robotic Joint Displacement, Paul P. Lin, An-Jen J. Yang Dec 1992

An Efficient Technique For Finding The Desired Global Optimum Of Robotic Joint Displacement, Paul P. Lin, An-Jen J. Yang

Mechanical Engineering Faculty Publications

For an industrial robot on a daily operation basis such as pick and place, it is desired to minimize the robotic joint displacements when moving the robot from one location to another. The objective of the optimization here is to simultaneously minimize a robot end effector's positional error and the robotic joint displacements. By modifying the searching algorithm in the existing complex optimization method, this article presents a technique for finding the desired global optimum solution more efficiently. To compare the optimum searching capability between the proposed and existing searching algorithms, a modified Himmelblau's function is used as an objective …


An Improved Method For Online Calculation And Compensation Of The Static Deflection At A Robot End-Effector, Paul P. Lin, Hsiang-Dih Chiang, Xiu Xun Cui Apr 1991

An Improved Method For Online Calculation And Compensation Of The Static Deflection At A Robot End-Effector, Paul P. Lin, Hsiang-Dih Chiang, Xiu Xun Cui

Mechanical Engineering Faculty Publications

Traditionally, robotic deflection analysis for a low-weight robot has been performed based on an assumption that each link is treated as a cantilever beam, which leads to no angular deflection at a joint. In practice, a robotic intermediate joint is linearly and angulary deflected when a load is applied at the end-effector. It is found in this study that the additional link deflection resulting from the angular deflection of a robotic revolute joint substantially contributes to the end-effector's total deflection. This article presents an improved method via a combination of classical beam theory, energy methods and the concepts of differential …