Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Propulsion and Power

2015

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 42

Full-Text Articles in Engineering

Divergent Plume Reduction Of A High-Efficiency Multistage Plasma Thruster, Christopher M. Barlog Dec 2015

Divergent Plume Reduction Of A High-Efficiency Multistage Plasma Thruster, Christopher M. Barlog

Master's Theses

High Efficiency Multistage Plasma Thrusters (HEMPTs) are a relatively new form of electric propulsion that show promise for use on a variety of missions and have several advantages over their older EP competitors. One such advantage is their long predicted lifetime and minimal wall erosion due to a unique periodic permanent magnet system. A laboratory HEMPT was built and donated by JPL for testing at Cal Poly. Previous work was done to characterize the performance of this thruster and it was found to exhibit a large plume divergence, resulting in decreased thrust and specific impulse. This thesis explores the design …


Comment On Faa Rule Revision - Transport Category Aircraft, Paul F. Eschenfelder, Valter Battistoni Nov 2015

Comment On Faa Rule Revision - Transport Category Aircraft, Paul F. Eschenfelder, Valter Battistoni

Paul F. Eschenfelder

No abstract provided.


A Study Of Ion And Electron Responses To A Dc Electric Field In A Hydrocarbon Flame, Stewart Jacobs Oct 2015

A Study Of Ion And Electron Responses To A Dc Electric Field In A Hydrocarbon Flame, Stewart Jacobs

Von Braun Symposium Student Posters

No abstract provided.


Development Of A Thrust Test Stand For Dual-Range Micro-Thrust Devices, Nathan Schrock, Joseph Marten Boyd, Minh Dang, River Haring Oct 2015

Development Of A Thrust Test Stand For Dual-Range Micro-Thrust Devices, Nathan Schrock, Joseph Marten Boyd, Minh Dang, River Haring

Von Braun Symposium Student Posters

No abstract provided.


Effect Of Electrode Geometry And Location On Electrically-Modified Flames, Paulo R. Salvador Oct 2015

Effect Of Electrode Geometry And Location On Electrically-Modified Flames, Paulo R. Salvador

Von Braun Symposium Student Posters

No abstract provided.


Testing And Modeling Of A Porous Axial Injection, End-Burning Hybrid Motor, Matthew A. Hitt Oct 2015

Testing And Modeling Of A Porous Axial Injection, End-Burning Hybrid Motor, Matthew A. Hitt

Von Braun Symposium Student Posters

8th Wernher von Braun Memorial Symposium


Development Of A Plasma Microthruster, Brittani Searcy, Roberto Dextre Oct 2015

Development Of A Plasma Microthruster, Brittani Searcy, Roberto Dextre

Von Braun Symposium Student Posters

No abstract provided.


Extending Gr While Moving Up To Supersonic Speeds Poses Challenges Requiring Innovations, Nihad E. Daidzic Oct 2015

Extending Gr While Moving Up To Supersonic Speeds Poses Challenges Requiring Innovations, Nihad E. Daidzic

Aviation Department Publications

Achieving true global range requires new ideas in lightweight aircraft structures, progress in transonic and supersonic aerodynamics and breakthroughs in low-SFC propulsion.


Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina Oct 2015

Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina

Master's Theses

Performance characterization was undertaken for an air augmented rocket mixing duct with annular cavity configurations intended to produce thrust augmentation. Three mixing duct geometries and a fully annular cavity at the exit of the nozzle were tested to enable thrust comparisons. The rocket engine used liquid ethanol and gaseous oxygen, and was instrumented with sensors to output total thrust, mixing duct thrust, combustion chamber pressure, and propellant differential pressures across Venturi flow measurement tubes.

The rocket engine was tested to thrust maximum, with three different mixing ducts, three major combustion pressure sets, and a nozzle exit plane annular cavity (a …


A Bent-Pipe Microwave Wireless Power Transfer Spacecraft For Relay To Unserved Regions, Jeremy Straub Sep 2015

A Bent-Pipe Microwave Wireless Power Transfer Spacecraft For Relay To Unserved Regions, Jeremy Straub

Jeremy Straub

This paper seeks to begin a discussion about the efficacy of using a ‘bent pipe’ transmission concept (familiar to those in the communications satellite arena) for power transfer. It presents the ‘bent pipe’ concept and provides a brief qualitative consideration of the benefits of this approach. It also begins the process of quantitatively considering the efficacy of a ‘bent pipe’ mission by exploring the trade space related to frequency, antenna size and altitude.


Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green Sep 2015

Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green

Master's Theses

Small electric uninhabited aerial vehicles (UAV) represent a rapidly expanding market requiring optimization in both efficiency and weight; efficiency is critical during cruise or loiter where the vehicle operates at part power for up to 99% of the mission time. Of the four components (battery, motor, propeller, and electronic speed controller (ESC)) of the electric propulsion system used in small UAVs, the ESC has no accepted performance model and almost no published performance data. To collect performance data, instrumentation was developed to measure electrical power in and out of the ESC using the two wattmeter method and current sense resistors; …


Hybrid Assembly For An Aircraft, Richard P. Anderson, Lori Costello, Charles Eastlake, Glenn P. Greiner Aug 2015

Hybrid Assembly For An Aircraft, Richard P. Anderson, Lori Costello, Charles Eastlake, Glenn P. Greiner

Publications

A propeller driven aircraft powered by either an internal combustion engine or an electric motor. The parallel system hybrid aircraft can takeoff with the internal combustion engine and climb to a cruising altitude. The internal combus­tion engine then can be turned off and the electric motor turned on to power the aircraft's propeller. The aircraft is capable of alternating operation between the electric motor and internal combustion engine as often as required at alti­tude. The aircraft can be landed using either the internal combustion engine or the electric motor. The transition of power from the internal combustion engine to the …


Assessment Of Critical Technologies For Gas Turbine Engines Using Numerical Tools, Vinicius Pessoa Mapelli, Guillermo Paniagua, Jorge Sousa Aug 2015

Assessment Of Critical Technologies For Gas Turbine Engines Using Numerical Tools, Vinicius Pessoa Mapelli, Guillermo Paniagua, Jorge Sousa

The Summer Undergraduate Research Fellowship (SURF) Symposium

In 2014 gas turbine engine has reached a market value of 82.5 billion dollars, of which 59.5% are related to aircraft propulsion. The continuous market expansion attracts more and more the interest of researchers and industries towards the development of accurate numerical techniques to model thermodynamically the entire engine. This practice allows a performance and optimization analysis before the actual experimental testing, reducing the time and required investment in the design of a new engine. In this paper, a recently developed open source numerical tool named “Toolbox for the Modeling and Analysis of Thermodynamic Systems” (T-MATS) is used to assess …


Altered Combustion Characteristics Of Aluminum Fuels Through Low-Level Fluoropolymer Inclusions With And Without In Situ Nanoaluminum., Courtney K. Murphy, Brandon Terry, Steven F. Son Aug 2015

Altered Combustion Characteristics Of Aluminum Fuels Through Low-Level Fluoropolymer Inclusions With And Without In Situ Nanoaluminum., Courtney K. Murphy, Brandon Terry, Steven F. Son

The Summer Undergraduate Research Fellowship (SURF) Symposium

Aluminum inclusions have been widely used to increase the specific impulse of solid rocket propellant. However, issues arise with the addition of aluminum in the form of agglomeration, which can cause kinetic and thermal losses (i.e., two-phase flow losses) through the nozzle, which can reduce motor performance by as much as 10%. Reduction of agglomerate size may reduce the effect of two-phase flow losses. Polytetrafluoroethylene (PTFE or TeflonTM) inclusions into aluminum via mechanical activation (MA, milling) have been shown to produce a smaller coarse agglomerate size due to microexplosion of the composite particles at the propellant surface. Perflouroalkoxy …


High Pressure Combustion And Supersonic Jet Ignition For H2/Air, Michael G. Woodworth, Sayan Biswas, Li Qiao Aug 2015

High Pressure Combustion And Supersonic Jet Ignition For H2/Air, Michael G. Woodworth, Sayan Biswas, Li Qiao

The Summer Undergraduate Research Fellowship (SURF) Symposium

There are many incentives to increase the fuel efficiency of combustion processes. This paper looks at two available options to achieve this goal. The former aims to develop an experimental method that can analyze combustion at extremely high pressures to improve the understanding of high pressure H2/air combustion. Experimental data has been lacking a suitable combustion diagnostic to visualize high pressure combustion processes, making it difficult to improve the process. Improvement of x-ray diffraction tomography in a windowless combustor makes it possible to see flame propagation at high pressure. The procedure and chamber are still in the design phase, yet …


The Robert H. Goddard Papers, Robert H. Goddard Jul 2015

The Robert H. Goddard Papers, Robert H. Goddard

Archives & Special Collections Finding Aids

Dr. Robert H. Goddard was a member of the Clark Physics Department for 29 years. Foremost American pioneer of rocket research, he laid the technical and theoretical foundations for many of the developments in long-range rockets, missiles, satellites and space flight, which collectively put us into the Space Age.

The collection includes correspondence, diaries, journals, patent applications and awards, reports, and photographs. The collection also includes original paintings by Dr. Goddard.


Inlet Shape Considerations For Split-Wing Electric Distributed Propulsion, Kurt Vonderhaar Papathakis Jun 2015

Inlet Shape Considerations For Split-Wing Electric Distributed Propulsion, Kurt Vonderhaar Papathakis

Master's Theses

This thesis aims to uncover preliminary design relationships for an inlet of a split-wing electric distributed propulsion regional airliner. Several aspects of the inlet design were investigated, including: the overall thickness of the airfoil section with respect to the chord, inlet throat area, and lip radius. These parameters were investigated using several angles of attack and mass flow rates through the fan. Computational fluid dynamics, with a 2nd Order turbulence model was used and validated against World War II era data from NACA, as those studies were the most pertinent wind tunnel data available. Additionally, other works by Boeing, …


Hybrid Rocket Motor Scaling Process, Joseph B. R. Vanherweg Jun 2015

Hybrid Rocket Motor Scaling Process, Joseph B. R. Vanherweg

Master's Theses

Hybrid rocket propulsion technology shows promise for the next generation of sounding rockets and small launch vehicles. This paper seeks to provide details on the process of developing hybrid propulsion systems to the academic and amateur rocket communities to assist in future research and development. Scaling hybrid rocket motors for use in sounding rockets has been a challenge due to the inadequacies in traditional boundary layer analysis. Similarity scaling is an amendment to traditional boundary layer analysis which is helpful in removing some of the past scaling challenges. Maintaining geometric similarity, oxidizer and fuel similarity and mass flow rate to …


The Creation, Analysis, And Verification Of A Comprehensive Model Of A Micro Ion Thruster, Maxwell J. Bodnar Jun 2015

The Creation, Analysis, And Verification Of A Comprehensive Model Of A Micro Ion Thruster, Maxwell J. Bodnar

Master's Theses

A computational model of the micro-ion thruster MiXI has been developed, analyzed, and partially verified. This model includes submodels that govern the physical, magnetic, electrostatic, plasma physics, and power deposition of the thruster. Over the past few years, theses have been conducted with the goal of running tests and analyzing the results; this model is used to understand how the thruster components interact so as to make predictions about, and allow for optimization of, the thruster operation. Testing is then performed on the thruster and the results are compared to the output of the code. The magnetic structure of the …


Analysis Of Flammability Limits And Gas Properties Of A Solid Rocket Motor Test In A High Altitude Test Facility, Richard Scott Kirkpatrick May 2015

Analysis Of Flammability Limits And Gas Properties Of A Solid Rocket Motor Test In A High Altitude Test Facility, Richard Scott Kirkpatrick

Masters Theses

The testing of solid and liquid rocket propulsion systems in a confined test facility often produces explosive or flammable gases which must be safely handled. Often inert gases such as nitrogen are used to lower the molar fraction of oxygen to low enough levels to minimize the probability of an explosion or deflagration. For this thesis, the chemical composition of these rocket exhaust gases mixed with air were used to determine the flammability limits of the gas mixture. Using the ideal gas law and the conservation of mass, the exhaust gas composition and gas properties such as pressure, temperature, volume …


Trajectory Analysis And Comparison Of A Linear Aerospike Nozzle To A Conventional Bell Nozzle For Ssto Flight, Elizabeth Lara Lash May 2015

Trajectory Analysis And Comparison Of A Linear Aerospike Nozzle To A Conventional Bell Nozzle For Ssto Flight, Elizabeth Lara Lash

Masters Theses

Single-stage to orbit (SSTO) rocket technology offers the potential to substantially reduce launch costs, but has yet to be considered practical for conventional launch vehicles. However, new research in composite propellant tank technology opens the field for renewed evaluation. One technology that increases the efficiency and feasibility of SSTO flight is an altitude compensating rocket engine nozzle, as opposed to a conventional constant area, bell nozzle design. By implementing an altitude compensation nozzle, such as a linear, aerospike nozzle for in-atmosphere flight, the propellant mass fraction (PMF) may be reduced by as much as seven percent compared to a conventional …


Consideration Of The Use Of An Origami Style Solar Panel Array For A Space Solar Power Generation Satellite, Landon Klein, Tristan Plante, Alex Holland, Benjamin Kading, Jeremy Straub, David Whalen Apr 2015

Consideration Of The Use Of An Origami Style Solar Panel Array For A Space Solar Power Generation Satellite, Landon Klein, Tristan Plante, Alex Holland, Benjamin Kading, Jeremy Straub, David Whalen

Jeremy Straub

Since the beginning of the space race, space exploration has been an important part of America’s technological develop-ment. The notion of a power-intensive [1] mission to Mars, which utilizes 3D printing has been proposed. Space Solar Power can supply energy for this mission. This paper presents an Origami solar panel, based on work by [2], that can supply power to an outpost on Mars.


Consideration Of The Use Of A Space Solar Power Satellite System For A Manned Mars Mission, Benjamin Kading, Jeremy Straub, Tristan Plante, Alex Holland, Jordan Forbord, Landon Klein, David Whalen Apr 2015

Consideration Of The Use Of A Space Solar Power Satellite System For A Manned Mars Mission, Benjamin Kading, Jeremy Straub, Tristan Plante, Alex Holland, Jordan Forbord, Landon Klein, David Whalen

Jeremy Straub

The design of a manned Mars mission has been a point of ongoing interest . Numerous Mars missions have been proposed and designed but major roadblocks impair their completion. Primarily, these issues are related to cost and safety concerns. However, many technologies have been developed and are being developed to make a Mars mission more feasible. One such technology is Space So- lar Power. (SSP) SSP technology involves generating power in space from the sun and beaming it via microwave radia- tion to a ground site for use. This method has immediate usability on Mars due to the minimal atmosphere, …


Cubesat Deployable Solar Panel System, Thomas Mcguire, Skye Leake, Michael Parsons, Michael Hirsch, Benjamin Kading, Jeremy Straub, David Whalen Apr 2015

Cubesat Deployable Solar Panel System, Thomas Mcguire, Skye Leake, Michael Parsons, Michael Hirsch, Benjamin Kading, Jeremy Straub, David Whalen

Jeremy Straub

CubeSats are small spacecraft with a nominal size of 10 cm x 10 cm x 10 cm and a mass of 1.33 kg [1] (though some launch providers are now supporting expanded mass levels). While the CubeSat form factor has re-duced the time and cost of spacecraft development, the required resources are still beyond the grasp of many colleges and universities. The Open Prototype for Educational Nanosats (OPEN) aims to solve this problem. OPEN is an inexpen-sive modular CubeSat that can be produced with a parts budget of less than $5,000 [2]. The OpenOrbiter pro-gram is working to develop this …


Pattern Recognition And Expert Systems For Microwave Wireless Power Transmission Failure Prevention, Cameron Kerbaugh, Allen Mcdermott, Jeremy Straub, Eunjin Kim Apr 2015

Pattern Recognition And Expert Systems For Microwave Wireless Power Transmission Failure Prevention, Cameron Kerbaugh, Allen Mcdermott, Jeremy Straub, Eunjin Kim

Jeremy Straub

Wireless power transfer (WPT) can be used to deliver space-generated power to ground stations through the use of microwave beams. WPT satellite power delivery systems have two major failure states: misdi-recting a beam and failing to send power to a station. This project has implemented an expert system to perform pattern recognition in an effort to prevent failures by analyzing the system state and predicting potential failures before they happen in support of space-based testing [1] and deployment [2].


Design Concept For A Power Generating Satellite For A Manned Mars Mission, Alex Holland, Tristan Plante, Jordan Forbord, Landon Klein, Benjamin Kading, Jeremy Straub, David Whalen Apr 2015

Design Concept For A Power Generating Satellite For A Manned Mars Mission, Alex Holland, Tristan Plante, Jordan Forbord, Landon Klein, Benjamin Kading, Jeremy Straub, David Whalen

Jeremy Straub

Once proposed work in low-Earth orbit [1] to demonstrate the efficacy of wireless power transmis- sion is a mission is completed, an additional step is needed before the technology is sufficiently tested for use on Earth. A Martian mission (such as [2]) is pro- posed to allow the demonstration of the use of the wireless power transmission technology in support of and proximity to human astronaut operations.

This poster presets a satellite concept intended for use on this Mars mission, to supply power that is need- ed for human habitation and other purposes. This satel- lite is designed to be …


Pattern Recognition For Detecting Failures In Space Solar Power Systems, Allen Mcdermott, Cameron Kerbaugh, Jeremy Straub, Eunjin Kim Apr 2015

Pattern Recognition For Detecting Failures In Space Solar Power Systems, Allen Mcdermott, Cameron Kerbaugh, Jeremy Straub, Eunjin Kim

Jeremy Straub

This poster covers work relating to the use of expert systems and pattern recognition to attempt to identify, detect and prospectively stop patterns of activity that could potentially lead to failure of a space solar power (SSP) system. A database-based expert system has is presented to identify patterns, which can be used to determine whether a power beam could hit a unintend- ed target and potentially cause a calamity. This has been implemented via a facts-rule network via which supplied and collected facts and a rule set is used to de- termine whether the system is operating correctly (from a …


Detecting Failures In Space Solar Power Systems With Pattern Recognition, Allen Mcdermott, Cameron Kerbaugh, Jeremy Straub Apr 2015

Detecting Failures In Space Solar Power Systems With Pattern Recognition, Allen Mcdermott, Cameron Kerbaugh, Jeremy Straub

Jeremy Straub

This poster covers work relating to the use of expert systems and pattern recognition to attempt to identify, detect and prospectively stop patterns of activity that could potentially lead to failure of a space solar power (SSP) system. A database-based expert system has is presented to identify patterns, which can be used to determine whether a power beam could hit a unintend-ed target and potentially cause a calamity. This has been implemented via a facts-rule network via which supplied and collected facts and a rule set is used to de-termine whether the system is operating correctly (from a holistic perspective). …


An Expert System For Microwave Wireless Power Transmission Failure Prevention, Cameron Kerbaugh, Allen Mcdermott, Jeremy Straub Apr 2015

An Expert System For Microwave Wireless Power Transmission Failure Prevention, Cameron Kerbaugh, Allen Mcdermott, Jeremy Straub

Jeremy Straub

Wireless power transfer (WPT) can be used to deliver space-generated power to ground stations through the use of microwave beams. WPT satellite power delivery systems have two major failure states: misdi-recting a beam and failing to send power to a station. This project has implemented an expert system to perform pattern recognition in an effort to prevent failures by analyzing the system state and predicting potential failures before they happen in support of space-based testing [1] and deployment [2].


Comparison Of Radiation Dosage For Human Piloted Mars Missions Using Chemical, Nuclear Thermal, And Fusion Propulsion Systems, Steven Doyle Apr 2015

Comparison Of Radiation Dosage For Human Piloted Mars Missions Using Chemical, Nuclear Thermal, And Fusion Propulsion Systems, Steven Doyle

Research Horizons Day Posters

No abstract provided.