Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 47

Full-Text Articles in Engineering

Feasibility Assessment Of An All-Electric, Narrow-Body Airliner, Ariel Sampson Jun 2023

Feasibility Assessment Of An All-Electric, Narrow-Body Airliner, Ariel Sampson

Master's Theses

Combustion emissions from aviation operations contribute significantly to climate change and air pollution. Accordingly, there is increasing interest in advancing battery-powered propulsion for aviation applications to reduce emissions. As batteries continue to improve, it is essential to recognize breakthroughs in battery specific energy in the context of air transport vehicles. Most electric aircraft designs and programs have focused on small aircraft because of restrictive battery performance. This work presents a feasibility assessment for an all-electric airliner based on an Airbus A220-100 with turbofan engines replaced by electric motors and propellers. The analysis compares the performance characteristics of the electric airliner …


Method And Simulation Of On-Orbit Sub-Microthrust Evaluation, Jonathan Hood Jun 2022

Method And Simulation Of On-Orbit Sub-Microthrust Evaluation, Jonathan Hood

Master's Theses

With the advent of smaller satellites, along with the need for less than 0.1 μN precision attitude control for interferometry and imaging missions, finer micro- to sub-micro- thrusters have become an area of high interest. As thrusters are developed and ground-tested, it is necessary to evaluate their thrust performance on-orbit. On-orbit measurements offer actual thrust performance in mission conditions, free from ground facility vibrations and miniaturization restraints, and allow a thruster system to achieve a NASA Technology Readiness Level (TRL) of 7-8. A review is conducted of existing and proposed ground and on-orbit thrust measurement techniques. Experimental gaps and complementary …


Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett Jun 2021

Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett

Master's Theses

As the demand for air transportation is projected to increase, the environmental impacts produced by air travel will also increase. In order to counter the environmental impacts while also meeting the demand for air travel, there are goals and research initiatives that aim to develop more efficient aircraft. An emerging technology that supports these goals is the application of hybrid propulsion to aircraft, but there is a challenge in effectively exploring the performance of hybrid aircraft due to the time and money required for safe flight testing and due to the diverse design space of hybrid architectures and components. Therefore, …


Ram Air-Turbine Of Minimum Drag, Raymond Akagi Mar 2021

Ram Air-Turbine Of Minimum Drag, Raymond Akagi

Master's Theses

The primary motivation for this work was to predict the conditions that would yield minimum drag for a small Ram-Air Turbine used to provide a specified power requirement for a small flight test instrument called the Boundary Layer Data System. Actuator Disk Theory was used to provide an analytical model for this work.

Classic Actuator Disk Theory (CADT) or Froude’s Momentum Theory was initially established for quasi-one-dimensional flows and inviscid fluids to predict the power output, drag, and efficiency of energy-extracting devices as a function of wake and freestream velocities using the laws of Conservations of Mass, Momentum, and Energy. …


Conceptual Design Of A South Pole Carrier Pigeon Uav, Kendrick M. Dlima Jun 2020

Conceptual Design Of A South Pole Carrier Pigeon Uav, Kendrick M. Dlima

Master's Theses

Currently, the South Pole has a large data problem. It is estimated that 1.2 TB of data is being produced every day, but less than 500 GB of that data is being uploaded via aging satellites to researchers in other parts of the world. This requires those at the South Pole to analyze the data and carefully select the parts to send, possibly missing out on vital scientific information. The South Pole Carrier Pigeon will look to bridge this data gap.

The Carrier Pigeon will be a small unmanned aerial vehicle that will carry a 30 TB solid-state hard drive …


Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles Dec 2019

Performance Enhancement And Characterization Of An Electromagnetic Railgun, Paul M. Gilles

Master's Theses

Collision with orbital debris poses a serious threat to spacecraft and astronauts. Hypervelocity impacts resulting from collisions mean that objects with a mass less than 1g can cause mission-ending damage to spacecraft. A means of shielding spacecraft against collisions is necessary. A means of testing candidate shielding methods for their efficacy in mitigating hypervelocity impacts is therefore also necessary. Cal Poly’s Electromagnetic Railgun was designed with the goal of creating a laboratory system capable of simulating hypervelocity (≥ 3 km/s) impacts. Due to several factors, the system was not previously capable of high-velocity (≥ 1 km/s) tests. A deficient projectile …


Modeling And Testing Powerplant Subsystems Of A Solar Uas, Luke J. Bughman Oct 2019

Modeling And Testing Powerplant Subsystems Of A Solar Uas, Luke J. Bughman

Master's Theses

In order to accurately conduct the preliminary and detailed design of solar powered Unmanned Aerial Systems (UAS), it is necessary to have a thorough understanding of the systems involved. In particular, it is desirable to have mathematical models and analysis tools describing the energy income and expenditure of the vehicle. Solar energy income models may include available solar irradiance, photovoltaic array power output, and maximum power point tracker efficiency. Energy expenditure models include battery charging and discharging characteristics, propulsion system efficiency, and aerodynamic efficiency. In this thesis, a series of mathematical models were developed that characterize the performance of these …


Design Principles And Preliminary Testing Of A Micropropulsion Electrospray Thruster Research Platform, Will Alan Mcgehee Jul 2019

Design Principles And Preliminary Testing Of A Micropropulsion Electrospray Thruster Research Platform, Will Alan Mcgehee

Master's Theses

The need for micropropulsion solutions for spacecraft has been steadily increasing as scientific payloads require higher accuracy maneuvers and as the use of small form-factor spacecraft such as CubeSats becomes more common. Of the technologies used for this purpose, electrospray thrusters offer performance that make them an ideal choice. Electrosprays offer high accuracy impulse bits at low power and high efficiency, and have low volume requirements. Design choice reasoning and preliminary testing results are presented for two electrospray thruster designs. The first thruster, named the Demonstration thruster, is operated in atmospheric conditions and serves as a highly visible example of …


Colloid Thruster To Teach Advance Electric Propulsion Techniques To Post-Secondary Students, Alexander M. Powaser Jun 2019

Colloid Thruster To Teach Advance Electric Propulsion Techniques To Post-Secondary Students, Alexander M. Powaser

Master's Theses

Colloid thrusters, and electrospray thrusters as a whole, have been around since the 1960s. When they were first developed, the high efficiency and fine thrust control was overshadowed by the high power requirement for such a low thrust that the system provides. This caused the technology to be put on hold for aerospace applications. Now, as small satellites are becoming more prevalent, there has been a resurgence in interest in electrospray thruster technology. The recent advancements in tech- nology allow electrospray thrusters to use significantly less power and occupy less volume than their predecessors. As electrospray technology continues to advance, …


A Homegrown Dsmc-Pic Model For Electric Propulsion, Dominic Charles Lunde Jun 2019

A Homegrown Dsmc-Pic Model For Electric Propulsion, Dominic Charles Lunde

Master's Theses

Powering spacecraft with electric propulsion is becoming more common, especially in CubeSat-class satellites. On account of the risk of spacecraft interactions, it is important to have robust analysis and modeling tools of electric propulsion engines, particularly of the plasma plume. The Navier-Stokes equations used in classic continuum computational fluid dynamics do not apply to the rarefied plasma, and therefore another method must be used to model the flow. A good solution is to use the DSMC method, which uses a combination of particle modeling and statistical methods for modeling the simulated molecules. A DSMC simulation known as SINATRA has been …


Micro-Nozzle Simulation And Test For An Electrothermal Plasma Thruster, Tyler J. Croteau Dec 2018

Micro-Nozzle Simulation And Test For An Electrothermal Plasma Thruster, Tyler J. Croteau

Master's Theses

With an increased demand in Cube Satellite (CubeSat) development for low cost science and exploration missions, a push for the development of micro-propulsion technology has emerged, which seeks to increase CubeSat capabilities for novel mission concepts. One type of micro-propulsion system currently under development, known as Pocket Rocket, is an electrothermal plasma micro-thruster.

Pocket Rocket uses a capacitively coupled plasma, generated by radio-frequency, in order to provide neutral gas heating via ion-neutral collisions within a gas discharge tube. When compared to a cold-gas thruster of similar size, this gas heating mechanism allows Pocket Rocket to increase the exit thermal velocity …


Thermal Modelling And Validation Of Heat Profiles In An Rf Plasma Micro-Thruster, Alec Sean Henken Jun 2018

Thermal Modelling And Validation Of Heat Profiles In An Rf Plasma Micro-Thruster, Alec Sean Henken

Master's Theses

The need and demand for propulsion devices on nanosatellites has grown over the last decade due to interest in expanding nanosatellite mission abilities, such as attitude control, station-keeping, and collision avoidance. One potential micro-propulsion device suitable for nanosatellites is an electrothermal plasma thruster called Pocket Rocket. Pocket Rocket is a low-power, low-cost propulsion platform specifically designed for use in nanosatellites such as CubeSats. Due to difficulties associated with integrating propulsion devices onto spacecraft such as volume constraints and heat dissipation limitations, a characterization of the heat generation and heat transfer properties of Pocket Rocket is necessary. Several heat-transfer models of …


Electrode Geometry Effects In An Electrothermal Plasma Microthruster, Harrison Raymond King Jun 2018

Electrode Geometry Effects In An Electrothermal Plasma Microthruster, Harrison Raymond King

Master's Theses

Nanosatellites, such as Cubesats, are a rapidly growing sector of the space industry. Their popularity stems from their low development cost, short development cycle, and the widespread availability of COTS subsystems. Budget-conscious spacecraft designers are working to expand the range of missions that can be accomplished with nanosatellites, and a key area of development fueling this expansion is the creation of micropropulsion systems. One such system, originally developed at the Australian National University (ANU), is an electrothermal plasma thruster known as Pocket Rocket (PR). This device heats neutral propellant gas by exposing it to a Capacitively Coupled Plasma (CCP), then …


Actuator Disk Theory For Compressible Flow, Htet Htet Nwe Oo May 2017

Actuator Disk Theory For Compressible Flow, Htet Htet Nwe Oo

Master's Theses

Because compressibility effects arise in real applications of propellers and turbines, the Actuator Disk Theory or Froude’s Momentum Theory was established for compressible, subsonic flow using the three laws of conservation and isentropic thermodynamics. The compressible Actuator Disk Theory was established for the unducted (bare) and ducted cases in which the disk was treated as the only assembly within the flow stream in the bare case and enclosed by a duct having a constant cross-sectional area equal to the disk area in the ducted case. The primary motivation of the current thesis was to predict the ideal performance of a …


Divergent Plume Reduction Of A High-Efficiency Multistage Plasma Thruster, Christopher M. Barlog Dec 2015

Divergent Plume Reduction Of A High-Efficiency Multistage Plasma Thruster, Christopher M. Barlog

Master's Theses

High Efficiency Multistage Plasma Thrusters (HEMPTs) are a relatively new form of electric propulsion that show promise for use on a variety of missions and have several advantages over their older EP competitors. One such advantage is their long predicted lifetime and minimal wall erosion due to a unique periodic permanent magnet system. A laboratory HEMPT was built and donated by JPL for testing at Cal Poly. Previous work was done to characterize the performance of this thruster and it was found to exhibit a large plume divergence, resulting in decreased thrust and specific impulse. This thesis explores the design …


Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina Oct 2015

Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina

Master's Theses

Performance characterization was undertaken for an air augmented rocket mixing duct with annular cavity configurations intended to produce thrust augmentation. Three mixing duct geometries and a fully annular cavity at the exit of the nozzle were tested to enable thrust comparisons. The rocket engine used liquid ethanol and gaseous oxygen, and was instrumented with sensors to output total thrust, mixing duct thrust, combustion chamber pressure, and propellant differential pressures across Venturi flow measurement tubes.

The rocket engine was tested to thrust maximum, with three different mixing ducts, three major combustion pressure sets, and a nozzle exit plane annular cavity (a …


Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green Sep 2015

Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green

Master's Theses

Small electric uninhabited aerial vehicles (UAV) represent a rapidly expanding market requiring optimization in both efficiency and weight; efficiency is critical during cruise or loiter where the vehicle operates at part power for up to 99% of the mission time. Of the four components (battery, motor, propeller, and electronic speed controller (ESC)) of the electric propulsion system used in small UAVs, the ESC has no accepted performance model and almost no published performance data. To collect performance data, instrumentation was developed to measure electrical power in and out of the ESC using the two wattmeter method and current sense resistors; …


Inlet Shape Considerations For Split-Wing Electric Distributed Propulsion, Kurt Vonderhaar Papathakis Jun 2015

Inlet Shape Considerations For Split-Wing Electric Distributed Propulsion, Kurt Vonderhaar Papathakis

Master's Theses

This thesis aims to uncover preliminary design relationships for an inlet of a split-wing electric distributed propulsion regional airliner. Several aspects of the inlet design were investigated, including: the overall thickness of the airfoil section with respect to the chord, inlet throat area, and lip radius. These parameters were investigated using several angles of attack and mass flow rates through the fan. Computational fluid dynamics, with a 2nd Order turbulence model was used and validated against World War II era data from NACA, as those studies were the most pertinent wind tunnel data available. Additionally, other works by Boeing, …


Hybrid Rocket Motor Scaling Process, Joseph B. R. Vanherweg Jun 2015

Hybrid Rocket Motor Scaling Process, Joseph B. R. Vanherweg

Master's Theses

Hybrid rocket propulsion technology shows promise for the next generation of sounding rockets and small launch vehicles. This paper seeks to provide details on the process of developing hybrid propulsion systems to the academic and amateur rocket communities to assist in future research and development. Scaling hybrid rocket motors for use in sounding rockets has been a challenge due to the inadequacies in traditional boundary layer analysis. Similarity scaling is an amendment to traditional boundary layer analysis which is helpful in removing some of the past scaling challenges. Maintaining geometric similarity, oxidizer and fuel similarity and mass flow rate to …


The Creation, Analysis, And Verification Of A Comprehensive Model Of A Micro Ion Thruster, Maxwell J. Bodnar Jun 2015

The Creation, Analysis, And Verification Of A Comprehensive Model Of A Micro Ion Thruster, Maxwell J. Bodnar

Master's Theses

A computational model of the micro-ion thruster MiXI has been developed, analyzed, and partially verified. This model includes submodels that govern the physical, magnetic, electrostatic, plasma physics, and power deposition of the thruster. Over the past few years, theses have been conducted with the goal of running tests and analyzing the results; this model is used to understand how the thruster components interact so as to make predictions about, and allow for optimization of, the thruster operation. Testing is then performed on the thruster and the results are compared to the output of the code. The magnetic structure of the …


Design Methods For Remotely Powered Unmanned Aerial Vehicles, William Beaman Howe Mar 2015

Design Methods For Remotely Powered Unmanned Aerial Vehicles, William Beaman Howe

Master's Theses

A method for sizing remotely powered unmanned aerial vehicles is presented to augment the conventional design process. This method allows for unconventionally powered aircraft to become options in trade studies during the initial design phase. A design matrix is created that shows where, and if, a remotely powered vehicle fits within the design space. For given range and power requirements, the design matrix uses historical data to determine whether an internal combustion or electrical system would be most appropriate. Trends in the historical data show that the break in the design space between the two systems is around 30 miles …


Cold Flow Performance Of A Ramjet Engine, Harrison G. Sykes Dec 2014

Cold Flow Performance Of A Ramjet Engine, Harrison G. Sykes

Master's Theses

The design process and construction of the initial modular ramjet attachment to the Cal Poly supersonic wind tunnel is presented. The design of a modular inlet, combustor, and nozzle are studied in depth with the intentions of testing in the modular ramjet. The efforts undertaken to characterize the Cal Poly supersonic wind tunnel and the individual component testing of this attachment are also discussed. The data gathered will be used as a base model for future expansion of the ramjet facility and eventual hot fire testing of the initial components. Modularity of the inlet, combustion chamber, and nozzle will allow …


Dual High-Voltage Power Supply For Use On Board A Cubesat, Nicholas Weiser Jun 2014

Dual High-Voltage Power Supply For Use On Board A Cubesat, Nicholas Weiser

Master's Theses

Since their conception in 1999, CubeSats have come and gone a long way. The first few that went into space were more of a “proof of concept,” and were more focused on sending simple data and photographs back to Earth. Since then, vast improvements have been made by over 40 universities and private firms, and now CubeSats are beginning to look towards interplanetary travel. These small satellites could provide a cost effective means of exploring the galaxy, using off the shelf components and piggy-backing on other launch vehicles with more expensive payloads. However, CubeSats are traditionally launched into Low Earth …


Development Of Safety Standards For Cubesat Propulsion Systems, Liam Jon Cheney Feb 2014

Development Of Safety Standards For Cubesat Propulsion Systems, Liam Jon Cheney

Master's Theses

The CubeSat community has begun to develop and implement propulsion systems. This movement represents a new capability which may satisfy mission needs such as orbital and constellation maintenance, formation flight, de-orbit, and even interplanetary travel. With the freedom and capability granted by propulsion systems, CubeSat providers must accept new responsibilities in proportion to the potential hazards that propulsion systems may present.

The Cal Poly CubeSat program publishes and maintains the CubeSat Design Specification (CDS). They wish to help the CubeSat community to safety and responsibly expand its capabilities to include propulsive designs. For this reason, the author embarked on the …


Analysis Of An Inflatable Gossamer Device To Efficiently De-Orbit Cubesats, Robert A. Hawkins Jr. Dec 2013

Analysis Of An Inflatable Gossamer Device To Efficiently De-Orbit Cubesats, Robert A. Hawkins Jr.

Master's Theses

There is an increased need for spacecraft to quickly and efficiently de-orbit themselves as the amount of debris in orbit around Earth grows. Defunct spacecraft pose a significant threat to the LEO environment due to their risk of fragmentation. If these spacecraft are de-orbited at the end of their useful life their risk to future spacecraft is greatly lessened. A proposed method of efficiently de-orbiting spacecraft is to use an inflatable thin-film envelope to increase the body's area to mass ratio and thusly shortening its orbital lifetime. The system and analysis presented in this project is sized for use on …


Numerical Flow Field Analysis Of An Air Augmented Rocket Using The Axisymmetric Method Of Characteristics, Jeffrey Massman Dec 2013

Numerical Flow Field Analysis Of An Air Augmented Rocket Using The Axisymmetric Method Of Characteristics, Jeffrey Massman

Master's Theses

An Axisymmetric Rocket Ejector Simulation (ARES) was developed to numerically analyze various configurations of an air augmented rocket. Primary and secondary flow field visualizations are presented and performance predictions are tabulated. A parametric study on ejector geometry is obtained following a validation of the flow fields and performance values.

The primary flow is calculated using a quasi-2D, irrotational Method of Characteristics and the secondary flow is found using isentropic relations. Primary calculations begin at the throat and extend through the nozzle to the location of the first Mach Disk. Combustion properties are tabulated before analysis to allow for propellant property …


Hollow Plume Mitigation Of A High-Efficiency Multistage Plasma Thruster, Scott Alan Mcgrail Dec 2013

Hollow Plume Mitigation Of A High-Efficiency Multistage Plasma Thruster, Scott Alan Mcgrail

Master's Theses

Since 2000, a relatively new electric thruster concept has been in research, development, and production at Thales Electron Devices in Germany. This High Efficiency Multistage Plasma Thruster, or HEMPT, has promising lifetime capabilities due to its plasma confinement system. However, the permanent magnet system that offers this and other benefits also creates a hollow plume, where ions are accelerated at angles rather than up the thruster centerline, causing a dip in ion current along the centerline. A laboratory model, built at JPL, was run at Cal Poly to characterize this plume shape and implement a shield to restore a conical …


Qualitative Methods Used To Develop And Characterize The Circulation Control System On Cal Poly's Amelia, Eric N. Paciano Sep 2013

Qualitative Methods Used To Develop And Characterize The Circulation Control System On Cal Poly's Amelia, Eric N. Paciano

Master's Theses

The circulation control system onboard Cal Poly's Advanced Model for Extreme Lift and Improved Aeroacoustics was a critical component of a highly complex wind tunnel model produced in order to fulfill the requirements of a NASA Research Announcement awarded to David Marshall of the Aerospace Engineering Department. The model was based on a next generation, 150 passenger, regional, cruise efficient, short take-off and landing concept aircraft that achieved high lift through circulation control wings and over-the-wing mounted engines. The wind tunnel model was 10-ft in span, used turbine propulsion simulators, and had a functioning circulation control system driven from tunnel …


Axisymmetric Air Augmented Methanol/Gox Rocket Mixing Duct Experimental Thrust Study, Kyle Jacob Johnson Mar 2013

Axisymmetric Air Augmented Methanol/Gox Rocket Mixing Duct Experimental Thrust Study, Kyle Jacob Johnson

Master's Theses

A hot-flow axisymmetric Air Augmented Rocket (AAR) test apparatus was constructed to test various mixing duct configurations at static conditions. Primary flow for the AAR was provided through a liquid methanol-gaseous oxygen bipropellant rocket. Experimental thrust measurements were recorded and propellant mass flow rates and chamber conditions were calculated using an iterative solver dependant on recorded propellant line stagnation pressures. Primary rocket flow produced thrust ranging from 14 to 17.9lbf. Primary mass flow rate through testing ranged from 0.071 to 0.085lbm/s with calculated chamber pressures between 298-362psia. Calculated primary flow velocity ranged from 6,600ft/s to 8,000ft/s depending on propellant pressure …


The Application Of Systems Engineering Principles To Model Lithium Ion Battery Voltage, George Gibbs Dec 2012

The Application Of Systems Engineering Principles To Model Lithium Ion Battery Voltage, George Gibbs

Master's Theses

The objective of this project is to present a Lithium Ion battery voltage model derived using systems engineering principles. This paper will describe the details of the model and the implementation of the model in practical use in a power system. Additionally, the model code is described and results of the model output are compared to battery cell test data. Finally, recommendations for increased model fidelity and capability are summarized.

The modeling theory has been previously documented in the literature but detailed implementation and application of the modeling theory is shown. The detailed battery cell test voltage profiles are proprietary; …