Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Torque Vectoring To Maximize Straight-Line Efficiency In An All-Electric Vehicle With Independent Rear Motor Control, William Blake Brown Dec 2021

Torque Vectoring To Maximize Straight-Line Efficiency In An All-Electric Vehicle With Independent Rear Motor Control, William Blake Brown

Theses and Dissertations

BEVs are a critical pathway towards achieving energy independence and meeting greenhouse and pollutant gas reduction goals in the current and future transportation sector [1]. Automotive manufacturers are increasingly investing in the refinement of electric vehicles as they are becoming an increasingly popular response to the global need for reduced transportation emissions. Therefore, there is a desire to extract the most fuel economy from a vehicle as possible. Some areas that manufacturers spend much effort on include minimizing the vehicle’s mass, body drag coefficient, and drag within the powertrain. When these values are defined or unchangeable, interest is driven to …


Performance Loss Rate And Temperature Modeling In Predictive Energy Yield Programs For Utility-Scale Solar Power Plants, Katelynn M. Dinius Dec 2021

Performance Loss Rate And Temperature Modeling In Predictive Energy Yield Programs For Utility-Scale Solar Power Plants, Katelynn M. Dinius

Master's Theses

The Gold Tree Solar Farm, designed by REC Solar, has a rated output power of 4.5 MW and began operation in 2018 to provide electricity to Cal Poly’s campus. Gold Tree Solar Farm site terrain consists of rolling hills and uneven slopes. The uneven typography results in interrow shading, requiring a modified tracking control algorithm to maximize power production. Predicting a utility solar field’s lifetime energy yield is a critical step in assessing project feasibility and calculating project revenue. The MATLAB-based predictive power model developed for this field overpredicted power in the middle of the day. The purpose of this …


Zip Load Modeling For Single And Aggregate Loads And Cvr Factor Estimation, Yiqi Zhang, Yuan Liao, Evan S. Jones, Nicholas Jewell, Dan M. Ionel Aug 2021

Zip Load Modeling For Single And Aggregate Loads And Cvr Factor Estimation, Yiqi Zhang, Yuan Liao, Evan S. Jones, Nicholas Jewell, Dan M. Ionel

Electrical and Computer Engineering Presentations

ZIP load modeling has been used in various power system applications. The aggregate load modeling is common practice in utility companies. However, little research has been done on the theoretical formulation of the aggregate load. This paper formulates the aggregate ZIP load model using the single ZIP load model. The factors that may affect aggregate ZIP load estimation are studied. Common ZIP parameter estimation methods including least squares method, optimization method and neural network method have been used in this paper to estimate ZIP parameters. The case studies are based on the IEEE 13-bus and 34-bus system built in OpenDSS. …


A Demand-Supply Matching-Based Approach For Mapping Renewable Resources Towards 100% Renewable Grids In 2050, Loiy Al-Ghussain, Adnan Darwish Ahmad, Ahmad M. Abubaker, Mohammad Abujubbeh, Abdulaziz Almalaq, Mohamed A. Mohamed Apr 2021

A Demand-Supply Matching-Based Approach For Mapping Renewable Resources Towards 100% Renewable Grids In 2050, Loiy Al-Ghussain, Adnan Darwish Ahmad, Ahmad M. Abubaker, Mohammad Abujubbeh, Abdulaziz Almalaq, Mohamed A. Mohamed

Mechanical Engineering Graduate Research

Recently, many renewable energy (RE) initiatives around the world are based on general frameworks that accommodate the regional assessment taking into account the mismatch of supply and demand with pre-set goals to reduce energy costs and harmful emissions. Hence, relying entirely on individual assessment and RE deployment scenarios may not be effective. Instead, developing a multi-faceted RE assessment framework is vital to achieving these goals. In this study, a regional RE assessment approach is presented taking into account the mismatch of supply and demand with an emphasis on Photovoltaic (PV) and wind turbine systems. The study incorporates mapping of renewable …


Multi-Objective Optimization For Aircraft Power Systems Using A Network Graph Representation, Damien Lawhorn, Vandana Rallabandi, Dan M. Ionel Mar 2021

Multi-Objective Optimization For Aircraft Power Systems Using A Network Graph Representation, Damien Lawhorn, Vandana Rallabandi, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

Today, the electrification of flight is more popular than ever, creating a wide array of concept aircraft and associated power system topologies. In order to gain insights into benefits of these varying architectures, this paper introduces the development of a framework for electric aircraft power system (EAPS) optimization. The proposed framework accepts inputs from a designer in the form of component parameters and desired flight mission characteristics. A collective graph representing many possible architectures is formed, from which, subgraphs that describe power system topologies meeting the flight requirements are extracted and analyzed. Optimal EAPS architectures with respect to goals of …


Voltage Security Optimization For Power Transmission Systems, Tamer Ibrahim Jan 2021

Voltage Security Optimization For Power Transmission Systems, Tamer Ibrahim

Dissertations and Theses

This project proposes an optimization approach for day-ahead reactive power planning to ensure voltage security in transmission networks. The problem is formulated as a voltage-secure multi-period optimal reactive power dispatch (MP-ORPD) problem. The optimization approach searches for optimal set-points of dynamic and static reactive power (var) resources. Specifically, the output includes set-points for switching shunts, transformer taps, and voltage magnitudes at the regulated buses. The primary goal is to maximize the dynamic reactive power reserve of the system, by minimizing the reactive power supplied by synchronous generators. The secondary goal is to minimize changes in the settings of switching shunts …


Research On Power System State Estimation Problems – Series-Compensated Transmission Line Parameter And Load Model Parameter Estimation, Yiqi Zhang Jan 2021

Research On Power System State Estimation Problems – Series-Compensated Transmission Line Parameter And Load Model Parameter Estimation, Yiqi Zhang

Theses and Dissertations--Electrical and Computer Engineering

Transmission line and load model parameters are essential inputs to power system modeling and simulation, control, protection, operation, optimization, and planning. These parameters usually vary over time or under different operating conditions. Thus, reliable estimation methods are desired to ensure the accuracy of those parameters. This research focuses on estimation for transmission line parameters and the ZIP load model. The proposed estimation methods can use both online measurements and historical data of a specified duration. The parameters of long transmission lines with different series-compensation configurations are estimated using linear methods and optimal estimators with bad data detection capability. Additionally, Kalman …


Optimization Of Energy-Constrained Resources In Radial Distribution Networks With Solar Pv, Mohammad Nawaf Nazir Jan 2021

Optimization Of Energy-Constrained Resources In Radial Distribution Networks With Solar Pv, Mohammad Nawaf Nazir

Graduate College Dissertations and Theses

The research objective of the proposed dissertation is to make best use of available distributed energy resources to meet dynamic market opportunities while accounting for AC physics of unbalanced distribution networks and the uncertainty of distributed solar photovoltaics (PV). With ever increasing levels of renewable generation, distribution system operations must shift from a mindset of static unidirectional power flows to dynamic, unpredictable bidirectional flows. To manage this variability, distributed energy resources (DERs; e.g.,solar PV inverters, inverter-based batteries, electric vehicles, water heaters, A/Cs) need to be coordinated for reliable and resilient operation. This introduces the challenge of coordinating such resources at …