Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Engineering

Recent Advances Of Wind-Solar Hybrid Renewable Energy Systems For Power Generation: A Review, Pranoy Roy, Jiangbiao He, Tiefu Zhao, Yash Veer Singh Jan 2022

Recent Advances Of Wind-Solar Hybrid Renewable Energy Systems For Power Generation: A Review, Pranoy Roy, Jiangbiao He, Tiefu Zhao, Yash Veer Singh

Electrical and Computer Engineering Faculty Publications

A hybrid renewable energy source (HRES) consists of two or more renewable energy sources, such as wind turbines and photovoltaic systems, utilized together to provide increased system efficiency and improved stability in energy supply to a certain degree. The objective of this study is to present a comprehensive review of wind-solar HRES from the perspectives of power architectures, mathematical modeling, power electronic converter topologies, and design optimization algorithms. Since the uncertainty of HRES can be reduced further by including an energy storage system, this paper presents several hybrid energy storage system coupling technologies, highlighting their major advantages and disadvantages. Various …


Data-Driven Decarbonization Of Residential Heating Systems: An Equity Perspective., John Wamburu, Emma Grazier, David Irwin, Christine Crago, Prashant Shenoy Jan 2022

Data-Driven Decarbonization Of Residential Heating Systems: An Equity Perspective., John Wamburu, Emma Grazier, David Irwin, Christine Crago, Prashant Shenoy

Publications

Since heating buildings using natural gas, propane and oil makes up a significant proportion of the aggregate carbon emissions every year, there is a strong interest in decarbonizing residential heating systems using new technologies such as electric heat pumps. In this poster, we conduct a data-driven optimization study to analyze the potential of replacing gas heating with electric heat pumps to reduce carbon emissions in a city-wide distribution grid. We seek to not only reduce the carbon footprint of residential heating, but also show how to do so equitably. Our results show that lower income homes have an energy usage …


Zip Load Modeling For Single And Aggregate Loads And Cvr Factor Estimation, Yiqi Zhang, Yuan Liao, Evan S. Jones, Nicholas Jewell, Dan M. Ionel Aug 2021

Zip Load Modeling For Single And Aggregate Loads And Cvr Factor Estimation, Yiqi Zhang, Yuan Liao, Evan S. Jones, Nicholas Jewell, Dan M. Ionel

Electrical and Computer Engineering Presentations

ZIP load modeling has been used in various power system applications. The aggregate load modeling is common practice in utility companies. However, little research has been done on the theoretical formulation of the aggregate load. This paper formulates the aggregate ZIP load model using the single ZIP load model. The factors that may affect aggregate ZIP load estimation are studied. Common ZIP parameter estimation methods including least squares method, optimization method and neural network method have been used in this paper to estimate ZIP parameters. The case studies are based on the IEEE 13-bus and 34-bus system built in OpenDSS. …


A Demand-Supply Matching-Based Approach For Mapping Renewable Resources Towards 100% Renewable Grids In 2050, Loiy Al-Ghussain, Adnan Darwish Ahmad, Ahmad M. Abubaker, Mohammad Abujubbeh, Abdulaziz Almalaq, Mohamed A. Mohamed Apr 2021

A Demand-Supply Matching-Based Approach For Mapping Renewable Resources Towards 100% Renewable Grids In 2050, Loiy Al-Ghussain, Adnan Darwish Ahmad, Ahmad M. Abubaker, Mohammad Abujubbeh, Abdulaziz Almalaq, Mohamed A. Mohamed

Mechanical Engineering Graduate Research

Recently, many renewable energy (RE) initiatives around the world are based on general frameworks that accommodate the regional assessment taking into account the mismatch of supply and demand with pre-set goals to reduce energy costs and harmful emissions. Hence, relying entirely on individual assessment and RE deployment scenarios may not be effective. Instead, developing a multi-faceted RE assessment framework is vital to achieving these goals. In this study, a regional RE assessment approach is presented taking into account the mismatch of supply and demand with an emphasis on Photovoltaic (PV) and wind turbine systems. The study incorporates mapping of renewable …


Multi-Objective Optimization For Aircraft Power Systems Using A Network Graph Representation, Damien Lawhorn, Vandana Rallabandi, Dan M. Ionel Mar 2021

Multi-Objective Optimization For Aircraft Power Systems Using A Network Graph Representation, Damien Lawhorn, Vandana Rallabandi, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

Today, the electrification of flight is more popular than ever, creating a wide array of concept aircraft and associated power system topologies. In order to gain insights into benefits of these varying architectures, this paper introduces the development of a framework for electric aircraft power system (EAPS) optimization. The proposed framework accepts inputs from a designer in the form of component parameters and desired flight mission characteristics. A collective graph representing many possible architectures is formed, from which, subgraphs that describe power system topologies meeting the flight requirements are extracted and analyzed. Optimal EAPS architectures with respect to goals of …


Design Optimization And Comparison Of Direct-Drive Outer-Rotor Srms Based On Fast Current Profile Estimation And Transient Fea, Vandana Rallabandi, Peng Han, Jie Wu, Aaron M. Cramer, Dan M. Ionel, Ping Zhou Oct 2020

Design Optimization And Comparison Of Direct-Drive Outer-Rotor Srms Based On Fast Current Profile Estimation And Transient Fea, Vandana Rallabandi, Peng Han, Jie Wu, Aaron M. Cramer, Dan M. Ionel, Ping Zhou

Power and Energy Institute of Kentucky Faculty Publications

Outer-rotor switched reluctance machines (SRMs) have drawn much attention as promising candidates for in-wheel direct-drive motors of future electric vehicles. This article presents a systematic performance comparison of three outer-rotor SRM topologies for in-wheel traction applications in terms of the specific torque, electromagnetic efficiency, torque ripple, radial force, and mechanical aspects. A generalized design optimization framework for SRMs is proposed to enable the fast evaluation of large numbers of designs generated from the differential evolution by incorporating an analytical current profile estimation into the transient finite element analysis. The relationship between the saliency ratio and converter volt-ampere rating is also …


Design Optimization Of Coreless Axial-Flux Pm Machines With Litz Wire And Pcb Stator Windings, Murat G. Kesgin, Peng Han, Narges Taran, Damien Lawhorn, Donovin Lewis, Dan M. Ionel Oct 2020

Design Optimization Of Coreless Axial-Flux Pm Machines With Litz Wire And Pcb Stator Windings, Murat G. Kesgin, Peng Han, Narges Taran, Damien Lawhorn, Donovin Lewis, Dan M. Ionel

Electrical and Computer Engineering Faculty Publications

Coreless axial-flux permanent-magnet (AFPM) machines may be attractive options for high-speed and high-power-density applications due to the elimination of core losses. In order to make full use of the advantages offered by these machines and avoid excessive eddy current losses in windings, advanced technologies for winding conductors need to be employed to suppress the eddy effect, such as the Litz wire and printed circuit board (PCB). In this paper, the best practices for designing Litz wire/PCB windings are discussed and a brief survey of state of the art PCB winding technology is provided. Three coreless AFPM machines are mainly considered. …


Optimal Study Of A High Specific Torque Vernier-Type Axial-Flux Pm Machine With Two Different Stators And A Single Winding, Murat G. Kesgin, Peng Han, Narges Taran, Dan M. Ionel Oct 2020

Optimal Study Of A High Specific Torque Vernier-Type Axial-Flux Pm Machine With Two Different Stators And A Single Winding, Murat G. Kesgin, Peng Han, Narges Taran, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper presents the optimal study of a verniertype axial-flux permanent-magnet (AFPM) machine, which has a high-polarity spoke-type PM rotor, a wound stator with a low number of coils, and a profiled stator. Both stators have profiled teeth to enhance the magnetic interaction between the rotor PM array and stator windings for torque production. Compared to the topology with two wound stators, the studied one has a smaller total axial length and is expected more suitable for applications where the space is limited in axial direction. Both topologies are optimized through 3-dimensional (3D) finite element analysis (FEA) by the combined …


Cost Analysis Of Optimized Islanded Energy Systems In A Dispersed Air Base Conflict, Jay F. Pearson, Torrey J. Wagner, Justin D. Delorit Sep 2020

Cost Analysis Of Optimized Islanded Energy Systems In A Dispersed Air Base Conflict, Jay F. Pearson, Torrey J. Wagner, Justin D. Delorit

Faculty Publications

The United States Air Force has implemented a dispersed air base strategy to enhance mission effectiveness for near-peer conflicts. Asset dispersal places many smaller bases across a wide geographic area, which increases resupply requirements and logistical complexity. Hybrid energy systems reduce resupply requirements through sustainable, off-grid energy production. This paper presents a novel hybrid energy renewable delivery system (HERDS) model capable of (1) selecting the optimal hybrid energy system design that meets demand at the lowest net present cost and (2) optimizing the delivery of the selected system using existing Air Force cargo aircraft. The novelty of the model’s capabilities …


Optimal And Secure Electricity Market Framework For Market Operation Of Multi-Microgrid Systems, Mohammad Mahmoudian Esfahani Jul 2020

Optimal And Secure Electricity Market Framework For Market Operation Of Multi-Microgrid Systems, Mohammad Mahmoudian Esfahani

FIU Electronic Theses and Dissertations

Traditional power systems were typically based on bulk energy services by large utility companies. However, microgrids and distributed generations have changed the structure of modern power systems as well as electricity markets. Therefore, restructured electricity markets are needed to address energy transactions in modern power systems.

In this dissertation, we developed a hierarchical and decentralized electricity market framework for multi-microgrid systems, which clears energy transactions through three market levels; Day-Ahead-Market (DAM), Hour-Ahead-Market (HAM) and Real-Time-Market (RTM). In this market, energy trades are possible between all participants within the microgrids as well as inter-microgrids transactions. In this approach, we developed a …


A Network Graph Technique For The Design Of Electric Aircraft Power Systems, Damien Lawhorn, Vandana Rallabandi, Dan M. Ionel Jun 2020

A Network Graph Technique For The Design Of Electric Aircraft Power Systems, Damien Lawhorn, Vandana Rallabandi, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

Today the electrification of flight is more popular than ever, creating a wide array of concept aircraft and associated power system topologies. In order to gain insights into benefits of these varying architectures, this paper introduces the development of a framework for electric aircraft power system (EAPS) optimization. The proposed framework accepts inputs from a designer in the form of component parameters and desired flight mission characteristics. A collective graph representing many architectures is formed, from which, subgraphs or power system topologies meeting the flight requirements are extracted and analyzed. An optimum topology meeting the flight requirements with minimum mass, …


Systematically Exploring The Effects Of Pole Count On The Performance And Cost Limits Of Ultrahigh Efficiency Fractional Hp Axial Flux Pm Machines, Narges Taran, Vandana Rallabandi, Greg Heins, Dan M. Ionel Jan 2020

Systematically Exploring The Effects Of Pole Count On The Performance And Cost Limits Of Ultrahigh Efficiency Fractional Hp Axial Flux Pm Machines, Narges Taran, Vandana Rallabandi, Greg Heins, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

Optimizing the design of electric machines is a vital step in ensuring the economical use of active materials. The three-dimensional (3-D) flux paths in axial flux permanent magnet (AFPM) machines necessitate the use of computationally expensive 3-D electromagnetic analysis. Furthermore, a large number of design evaluations is required to find the optimum, causing the total computation time to be excessively long. In view of this, a two-level surrogate assisted algorithm capable of handling such expensive optimization problems is introduced, which substantially reduces the number of finite element analysis (FEA) evaluations to less than 200 while conventional algorithms require thousands of …


Optimal Combinations Of Utility Level Renewable Generators For A Net Zero Energy Microgrid Considering Different Utility Charge Rates, Evan S. Jones, Huangjie Gong, Dan M. Ionel Nov 2019

Optimal Combinations Of Utility Level Renewable Generators For A Net Zero Energy Microgrid Considering Different Utility Charge Rates, Evan S. Jones, Huangjie Gong, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

High initial investment and the intermittent nature of resources are major challenges for large scale renewable generation. The size of photovoltaic (PV) and wind turbine (WT) farms in the microgrid needs optimized to avoid curtailment and to efficiently meet the demand of a power system. Battery energy storage systems (BESSs) may also be used to improve flexibility. This paper explores the optimal sizing for PV and wind generators, as well as a BESS at the utility level for a large grid-connected net zero energy (NZE) hybrid microgrid considering characteristics such as initial investment, levelized cost of energy (LCOE), operating costs, …


Waved: A Coreless Axial Flux Pm Motor For Drive Systems With Constant Power Operation, Narges Taran, Vandana Rallabandi, Dan M. Ionel Jun 2019

Waved: A Coreless Axial Flux Pm Motor For Drive Systems With Constant Power Operation, Narges Taran, Vandana Rallabandi, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

In this paper, a two-phase coreless AFPM machine with wave winding, 2-stators, and 3-rotors for traction applications is studied. A highly general optimization method, employing 3D FEA as the computational engine is employed. Number of poles in addition to other geometrical variables are included as independent optimization variables. A method for extending the speed range by rotating one of the stator discs with respect to the other at constant power operation is proposed. An inverter configuration including Si and wide band gap devices is proposed to be employed in conjunction with the machine under study. The study includes a comparison …


Design Optimization Of Electric Machines With 3d Fea And A New Hybrid Doe-De Numerical Algorithm, Narges Taran, Vandana Rallabandi, Dan M. Ionel, Greg Heins, Dean Patterson, Ping Zhou May 2019

Design Optimization Of Electric Machines With 3d Fea And A New Hybrid Doe-De Numerical Algorithm, Narges Taran, Vandana Rallabandi, Dan M. Ionel, Greg Heins, Dean Patterson, Ping Zhou

Power and Energy Institute of Kentucky Faculty Publications

This paper discusses the multi-objective optimization of axial flux permanent magnet (AFPM) machines with ferrite spoke-type magnets, utilizing 3D finite element models. Three-dimensional finite element analysis is computationally expensive, and furthermore, substantial computation time is expended by optimization algorithms in evaluating low performing designs whose performance is far from the optimum if the search space is not specified correctly. In this regard, this work proposes two new methods for identifying the search space. The search is limited to ranges of input geometric variables where high performing designs are likely to be found. The optimization algorithm utilized is based on surrogate …


A Sustainable Prototype For Renewable Energy: Optimized Prime-Power Generator Solar Array Replacement, Nathan Thomsen, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt Jan 2019

A Sustainable Prototype For Renewable Energy: Optimized Prime-Power Generator Solar Array Replacement, Nathan Thomsen, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt

Faculty Publications

Remote locations such as disaster relief camps, isolated arctic communities, and military forward operating bases are disconnected from traditional power grids forcing them to rely on diesel generators with a total installed capacity of 10,000 MW worldwide. The generators require a constant resupply of fuel, resulting in increased operating costs, negative environmental impacts, and challenging fuel logistics. To enhance remote site sustainability, planners can develop stand-alone photovoltaic-battery systems to replace existing prime power generators. This paper presents the development of a novel cost-performance model capable of optimizing solar array and Li-ion battery storage size by generating tradeoffs between minimizing initial …


Two-Level Surrogate-Assisted Differential Evolution Multi-Objective Optimization Of Electric Machines Using 3-D Fea, Narges Taran, Dan M. Ionel, David G. Dorrell Nov 2018

Two-Level Surrogate-Assisted Differential Evolution Multi-Objective Optimization Of Electric Machines Using 3-D Fea, Narges Taran, Dan M. Ionel, David G. Dorrell

Power and Energy Institute of Kentucky Faculty Publications

A two-level surrogate-assisted optimization algorithm is proposed for electric machine design using 3-D finite-element analysis (FEA). The algorithm achieves the optima with much fewer FEA evaluations than conventional methods. It is composed of interior and exterior levels. The exploration is performed mainly in the interior level, which evaluates hundreds of designs employing affordable kriging models. Then, the most promising designs are evaluated in the exterior loop with expensive 3-D FEA models. The sample pool is constructed in a self-adjustable and dynamic way. A hybrid stopping criterion is used to avoid unnecessary expensive function evaluations.


Exploring The Efficiency And Cost Limits Of Fractional Hp Axial Flux Pm Machine Designs, Narges Taran, Vandana Rallabandi, Greg Heins, Dan M. Ionel Sep 2018

Exploring The Efficiency And Cost Limits Of Fractional Hp Axial Flux Pm Machine Designs, Narges Taran, Vandana Rallabandi, Greg Heins, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

Optimizing the design of electric machines is a vital step in ensuring the economical use of active materials. The three-dimensional flux paths in axial flux PM (AFPM) machines necessitate the use of computationally expensive 3D electromagnetic analysis. Furthermore, a large number of design evaluations is required to find the optimum, causing the total computation time to be excessively long. In view of this, a two-level surrogate assisted algorithm capable of handling such expensive optimization problems is introduced, which substantially reduces the number of FEA evaluations. The proposed algorithm is employed to optimally design an AFPM machine within a specified envelope, …


Grey Wolf Optimization-Based Optimum Energy-Management And Battery-Sizing Method For Grid-Connected Microgrids, Kutaiba Sabah Nimma, Monaaf D. A. Al-Falahi, Hung Duc Nguyen, S. D. G. Jayasinghe, Thair Mahmoud, Michael Negnevitsky Jan 2018

Grey Wolf Optimization-Based Optimum Energy-Management And Battery-Sizing Method For Grid-Connected Microgrids, Kutaiba Sabah Nimma, Monaaf D. A. Al-Falahi, Hung Duc Nguyen, S. D. G. Jayasinghe, Thair Mahmoud, Michael Negnevitsky

Research outputs 2014 to 2021

In the revolution of green energy development, microgrids with renewable energy sources such as solar, wind and fuel cells are becoming a popular and effective way of controlling and managing these sources. On the other hand, owing to the intermittency and wide range of dynamic responses of renewable energy sources, battery energy-storage systems have become an integral feature of microgrids. Intelligent energy management and battery sizing are essential requirements in the microgrids to ensure the optimal use of the renewable sources and reduce conventional fuel utilization in such complex systems. This paper presents a novel approach to meet these requirements …


Configuration And Optimization Of A Novel Compressed-Air-Assisted Wind Energy Conversion System, Jie Cheng Jul 2016

Configuration And Optimization Of A Novel Compressed-Air-Assisted Wind Energy Conversion System, Jie Cheng

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The increasing concerns over the environmental impact of carbon emissions and the unsustainability of conventional fossil fuel power plants are stimulating interest in the implementation of renewable energy in current power systems. Among all of the renewable energies, wind energy holds a prominent place because of its high output and the maturity of the technology. However, like all of the other renewable energies, integration of wind energy into the power grid causes some quality and control issues, such as overvoltage or undervoltage and frequency excursion.

To mitigate these issues and build a robust wind power system, a novel structure referred …


Fully Decentralized Multi-Agent System For Optimal Microgrid Control, Ricardo De Azevedo Mar 2016

Fully Decentralized Multi-Agent System For Optimal Microgrid Control, Ricardo De Azevedo

FIU Electronic Theses and Dissertations

In preparation for the influx of renewable energy sources that will be added to the electrical system, flexible and adaptable control schemes are necessary to accommodate the changing infrastructure. Microgrids have been gaining much attention as the main solution to the challenges of distributed and intermittent generation, but due to their low inertia, they need fast-acting control systems in order to maintain stability. Multi-Agent Systems have been proposed as dynamic control and communication frameworks. Decentralized arrangements of agents can provide resiliency and the much-desired “plug and play” behavior. This thesis describes a control system that implements droop control and the …


On The Radius Of Convergence Of Interconnected Analytic Nonlinear Input-Output Systems, Makhin Thitsa, W. Steven Gray Jan 2012

On The Radius Of Convergence Of Interconnected Analytic Nonlinear Input-Output Systems, Makhin Thitsa, W. Steven Gray

Electrical & Computer Engineering Faculty Publications

A complete analysis is presented of the radii of convergence of the parallel, product, cascade and feedback interconnections of analytic nonlinear input-output systems represented as Fliess operators. Such operators are described by convergent functional series, which are indexed by words over a noncommutative alphabet. Their generating series are therefore specified in terms of noncommutative formal power series. Given growth conditions for the coefficients of the generating series for the subsystems, the radius of convergence of each interconnected system is computed assuming the subsystems are either all locally convergent or all globally convergent. In the process of deriving the radius of …


Two-Step Optimal Thermal Generation Scheduling, B Fardanesh, F. Eugenio Villaseca May 1986

Two-Step Optimal Thermal Generation Scheduling, B Fardanesh, F. Eugenio Villaseca

Electrical and Computer Engineering Faculty Publications

A new approach to the solution of the optimal thermal generation scheduling problem is presented. The problem is solved in two steps. As a first step, the optimal production schedule for the next day is obtained based on a daily load forecast, reserve capacity requirements, and present status of generating units. The second-step algorithm uses the results of the first step and adjusts the previous schedule to meet new constraints developed during the course of the day. Variable truncation dynamic programming is proposed as a new method to reduce computation effort. To eliminate the need for solving the …