Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Swat Model Simulation Of Bioenergy Crop Impacts On Water Quality In Cache River Watershed, Eeshan Kumar Dec 2015

Swat Model Simulation Of Bioenergy Crop Impacts On Water Quality In Cache River Watershed, Eeshan Kumar

Graduate Theses and Dissertations

Energy security through increased biofuel production is one of the components of the Energy Independence and Security Act (EISA) 2007. As per EISA 2007 mandate, appropriate independent research institutes are required to assess concerns to natural biodiversity due to biofuel production and report it to the Congress through the Environment Protection Agency (EPA). Planners, researchers, and agencies concerned with environmental regulations, ideally, would like to have location-specific information about the impacts for developing appropriate management interventions. This study examines long-term impacts on water quality in response to targeted (i.e. marginal lands) production of biofuel crops by setting up two SWAT …


Design And Control Of A Bidirectional Dual Active Bridge Dc-Dc Converter To Interface Solar, Battery Storage, And Grid-Tied Inverters, Kenny George Dec 2015

Design And Control Of A Bidirectional Dual Active Bridge Dc-Dc Converter To Interface Solar, Battery Storage, And Grid-Tied Inverters, Kenny George

Electrical Engineering Undergraduate Honors Theses

In order to further reduce the size of today’s power converters, wide bandgap semiconductor technologies are being explored. These devices, such as silicon carbide (SiC), have been shown to outperform their silicon counterparts when used in high frequency switching, high temperature, and high voltage applications. These properties make them highly desirable in the bidirectional dual active bridge power converter. Being an isolated converter topology, the dual active bridge employs a transformer to provide step-up/step-down functionality and galvanic isolation for the converter. Transformers, as well as other passive components such as inductors and capacitors may be reduced in size when higher …


Industrial Energy Consumption, Benchmarking, And Analysis In The United States, Daniel Maldonado Dec 2015

Industrial Energy Consumption, Benchmarking, And Analysis In The United States, Daniel Maldonado

Mechanical Engineering Undergraduate Honors Theses

The purpose of this paper is to analyze the energy consumption of the industrial sector in the United States, and to identify the tools that can be used to minimize the consumption and improve the energy efficiency of all facilities in the country. The first part of the paper is a historical analysis of the industrial sector energy consumption, where the different energy sources are identified. The second part details different electronic tools that will provide facilities the ability of performing benchmarking, in order to understand their energy performance. Finally, the third part of this paper provides information about the …


Model Development And Validation For Wind Generation Transmission Systems, Mahmood Shihadeh Saadeh Dec 2015

Model Development And Validation For Wind Generation Transmission Systems, Mahmood Shihadeh Saadeh

Graduate Theses and Dissertations

In this research a new benchmark system is proposed for wind energy transmission systems. New model development, validation, and calibration methods for power transmission systems are proposed and implemented as well. First, a model reduction criteria is chosen based on electrical interconnection and geographical information. Model development is then done using reduction techniques on an operation model provided by a transmission operator based on the chosen criteria. Then model validation is performed using actual PMU synchrophasor measurements provided by a utility company. The model development and validation process ensures the accuracy of the developed model and makes for a realistic …


High Temperature Silicon Carbide Mixed-Signal Circuits For Integrated Control And Data Acquisition, Ashfaqur Rahman Dec 2015

High Temperature Silicon Carbide Mixed-Signal Circuits For Integrated Control And Data Acquisition, Ashfaqur Rahman

Graduate Theses and Dissertations

Wide bandgap semiconductor materials such as gallium nitride (GaN) and silicon carbide have grown in popularity as a substrate for power devices for high temperature and high voltage applications over the last two decades. Recent research has been focused on the design of integrated circuits for protection and control in these wide bandgap materials. The ICs developed in SiC and GaN can not only complement the power devices in high voltage and high frequency applications, but can also be used for standalone high temperature control and data acquisition circuitry.

This dissertation work aims to explore the possibilities in high temperature …


High-Frequency Transformer Design For Solid-State Transformers In Electric Power Distribution Systems, Roderick Javier Garcia Montoya Dec 2015

High-Frequency Transformer Design For Solid-State Transformers In Electric Power Distribution Systems, Roderick Javier Garcia Montoya

Graduate Theses and Dissertations

The objective of this thesis is to present a high- or medium-frequency transformer design methodology for Solid-State Transformer (SST) applications. SSTs have been proposed as a replacement of the traditional 50/60 Hz transformer in applications demanding high-power density. Moreover, due to the high penetration of distributed generation, DC grids, energy storage systems, and sensitive loads, SSTs have been considered as an enabling technology for envisioned future energy systems. These applications demand additional functionalities that may not be achieved with traditional transformers. For example, active power flow control, harmonic suppression, voltage regulation, voltage sag compensation, and reduced size and volume.

In …


Broadband High Efficiency Fractal-Like And Diverse Geometry Silicon Nanowire Arrays For Photovoltaic Applications, Omar Hassan Al-Zoubi Jul 2015

Broadband High Efficiency Fractal-Like And Diverse Geometry Silicon Nanowire Arrays For Photovoltaic Applications, Omar Hassan Al-Zoubi

Graduate Theses and Dissertations

Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been …


Implementation Of Natural Switching Surface Control For A Flyback Converter, Ethan Storm Williams May 2015

Implementation Of Natural Switching Surface Control For A Flyback Converter, Ethan Storm Williams

Electrical Engineering Undergraduate Honors Theses

The flyback converter is an extremely common topology used for DC/DC power conversion. Widely used methods to control the flyback converter include voltage mode and current mode controllers. More recently, sliding mode control has been developed for the flyback converter. While these control methods may be considered adequate, the Natural Switching Surface (NSS) sliding mode control method detailed in this thesis presents a more robust controller. NSS control eliminates the effects presented from variations in components and design as well as minimizes the effects from external disturbances. This thesis steps through the complete design and implementation process of a NSS …


Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate May 2015

Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate

Graduate Theses and Dissertations

Passivating silicon solar cell surfaces is critical to fabricating very high efficiency and low cost photovoltaic devices. The sun-facing surface of the solar cell, known as the emitter, is particularly important when designing a solar cell. This work focused first on an alternative method of forming the emitter of silicon solar cells, and secondly on a method for improving the surface passivation of both these non-traditional and standard n-type solar cells.

Top-down aluminum induced crystallization (TAIC) was used for forming a polycrystalline silicon layer from amorphous silicon using aluminum to catalyze the crystallization at much lower temperatures than otherwise possible. …


Experimental Verification And Integration Of A Next Generation Smart Power Management System, Tavis Clemmer May 2015

Experimental Verification And Integration Of A Next Generation Smart Power Management System, Tavis Clemmer

Graduate Theses and Dissertations

With the increase in energy demand by the residential community in this country and the diminishing fossil fuel resources being used for electric energy production there is a need for a system to efficiently manage power within a residence. The Smart Green Power Node (SGPN) is a next generation energy management system that automates on-site energy production, storage, consumption, and grid usage to yield the most savings for both the utility and the consumer. Such a system automatically manages on-site distributed generation sources such as a PhotoVoltaic (PV) input and battery storage to curtail grid energy usage when the price …


A New Design Method For Vanadium Redox Batteries In Renewable Energy Systems, Casey Gibson, Karla G. Morrissey Unversity Of Arkansas, Fayetteville Jan 2015

A New Design Method For Vanadium Redox Batteries In Renewable Energy Systems, Casey Gibson, Karla G. Morrissey Unversity Of Arkansas, Fayetteville

Inquiry: The University of Arkansas Undergraduate Research Journal

This study investigated the behavior of vanadium redox flow batteries (VRFBs), which are batteries capable of easily switching between charging and discharging modes, making them a suitable option for storing intermittent sources of alternative energies (solar, wind, etc). Since different sizes of the battery provide varying voltages, optimal parameters for a particular home are key for implementation. These parameters, specifically the cell and tank volumes of the battery that are capable of providing consistent on-load voltage, were determined using data from a 13 kW solar array and a medium-sized house. Charge/discharge current values were used to run a mathematical model …