Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Design, Fabrication And Characterization Of Plasmonic Fishnet Structures For The Enhancement Of Absorption In Thin Film Solar Cells, Sayan Seal Dec 2013

Design, Fabrication And Characterization Of Plasmonic Fishnet Structures For The Enhancement Of Absorption In Thin Film Solar Cells, Sayan Seal

Graduate Theses and Dissertations

Incorporating plasmonic structures into the back spacer layer of thin film solar cells (TFSCs) is an efficient way to improve their performance. The fishnet structure; which is a tunable, plasmonic light scatterer is used to enhance light absorption. Unlike other plasmonic particles that have been previously suggested, the fishnet is an electrically connected wire mesh and does not result in electric field localization, hence it results in greater absorption in the intrinsic Si layer. Unlike other designs, the fishnet structure is placed in the back spacer layer of the TFSC, so it does not block any incident light. There is …


Electrical Design Considerations And Packaging Of Power Electronic Modules, Shijie Wang Aug 2013

Electrical Design Considerations And Packaging Of Power Electronic Modules, Shijie Wang

Graduate Theses and Dissertations

A modern power electronic module can save significant energy usage in the power electronic systems by improving their switching efficiencies. One way to improve the efficiency of the power electronic module is to reduce its parasitic circuit elements. The purpose of this thesis is to investigate the mitigation of parasitic circuit elements in power electronic modules. General methods of mitigating parasitic inductances were analyzed by the Q3D Extractor and verified by the time-domain reflectometry (TDR) measurements. In most cases, the TDR measurement results closely matched those predicted by the Q3D Extractor. These methods were applied to design and analyze a …


The Effect Of Platinum In Nafion For Proton Exchange Membrane Fuel Cells, Elliott Korb May 2013

The Effect Of Platinum In Nafion For Proton Exchange Membrane Fuel Cells, Elliott Korb

Electrical Engineering Undergraduate Honors Theses

Under the growing pressure to veer from fossil fuel use to more environmentally conscious energy options, fuel cells of all kinds are coming to the forefront as viable options to replace part of fossil fuels’ present role. This effort not only includes automobiles, but fuel cells are also emerging as options for emergency generators, modern war ships and submarines, portable charging devices, and space applications. Proton exchange membrane (PEM) fuel cells are likely to dominate the smaller or more domestic applications of fuel cell technology. For the membrane, DuPont’s polymer Nafion was used in varying sizes. Using small testing platforms …


Design, Layout, And Testing Of A Silicon Carbide-Based Under Voltage Lock-Out Circuit, Michael Dalan Glover May 2013

Design, Layout, And Testing Of A Silicon Carbide-Based Under Voltage Lock-Out Circuit, Michael Dalan Glover

Graduate Theses and Dissertations

Silicon carbide-based power devices play an increasingly important role in modern power conversion systems. Finding a means to reduce the size and complexity of these systems by even incremental amounts can have a significant impact on cost and reliability. One approach to achieving this goal is the die-level integration of gate driver circuitry with the SiC power devices. Aside from cost reductions, there are significant advantages to the integration of the gate driver circuits with the power devices. By integrating the gate driver circuitry with the power devices, the parasitic inductances traditionally seen between the gate driver and the switching …


Intermediate Band Solar Cells Based On Inas Quantum Dots Embedded In Ingaas Quantum Well, Ramesh Vasan May 2013

Intermediate Band Solar Cells Based On Inas Quantum Dots Embedded In Ingaas Quantum Well, Ramesh Vasan

Graduate Theses and Dissertations

Intermediate band solar cells based on quantum dots and quantum wells with anti-reflection coating are investigated in this thesis. The demand for high efficient solar cells as an alternate source of energy is the main motivation for this research project. Intermediate band solar cells based on quantum dots were the subject of intensive research in recent years. High power conversion efficiency was predicted from InAs/GaAs intermediate band solar cells as the presence of InAs quantum dots increased the absorption below the band gap of the host material.

In this thesis, an attempt has been made to further increase the absorption …


Synthesis Of Optimized Inp/Zns Core/Shell Nanocrystals And Tio2 Nanotubes For Quantum Dot Sensitized Solar Cells, Seungyong Lee May 2013

Synthesis Of Optimized Inp/Zns Core/Shell Nanocrystals And Tio2 Nanotubes For Quantum Dot Sensitized Solar Cells, Seungyong Lee

Graduate Theses and Dissertations

Synthesis of InP/ZnS core/shell nanocrystals and TiO2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air …