Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Engineering

Hybrid Photovoltaic + Battery Energy System Grid-Tied Converter Capstone Review Thesis, Archer Taylor Jun 2023

Hybrid Photovoltaic + Battery Energy System Grid-Tied Converter Capstone Review Thesis, Archer Taylor

University Honors Theses

Hybrid power converters present an opportunity to more efficiently harness energy from renewable sources. This paper reviews an undergraduate senior capstone project with the goal of designing and verifying the benefits of a hybrid converter, combining a photovoltaic array, battery energy system and a DC-AC inverter. The author recounts their experience throughout the 6 month period, detailing the research and design process followed by the prototype testing. Additionally, they reflect on the struggles of the capstone team and how to apply the learnings in the future.


Data Center Power System Emulation And Gan-Based High-Efficiency Rectifier With Reactive Power Regulation, Jingjing Sun May 2022

Data Center Power System Emulation And Gan-Based High-Efficiency Rectifier With Reactive Power Regulation, Jingjing Sun

Doctoral Dissertations

Data centers are indispensable for today's computing and networking society, which has a considerable power consumption and significant impact on power system. Meanwhile, the average energy usage efficiency of data centers is still not high, leading to significant power loss and system cost.

In this dissertation, effective methods are proposed to investigate the data center load characteristics, improve data center power usage efficiency, and reduce the system cost.

First, a dynamic power model of a typical data center ac power system is proposed, which is complete and able to predict the data center's dynamic performance. Also, a converter-based data center …


Modeling, Simulation, And Hardware-In-The-Loop Implementation Of Distributed Voltage Control In Power Systems With Renewable Energy Sources, Ali Dehghan Banadaki Jan 2022

Modeling, Simulation, And Hardware-In-The-Loop Implementation Of Distributed Voltage Control In Power Systems With Renewable Energy Sources, Ali Dehghan Banadaki

Graduate Theses, Dissertations, and Problem Reports

This dissertation develops and analyzes distributed controllers for power systems with renewable energy sources. A comprehensive state space modeling of voltage source inverters (VSIs) is developed specifically to address the secondary voltage control. This model can be used for simulation and control design. Unlike frequency, voltage is a local phenomenon, meaning that it cannot be controlled from a far distance. Therefore, a voltage zoning matrix that relates the sensitivity of the loads to the sources is proposed. The secondary voltage control is designed by applying the eigenvalue decomposition of the voltage zoning matrix to obtain the reference generators voltages. The …


Direct Torque Control For Silicon Carbide Motor Drives, Mohammad Hazzaz Mahmud Jul 2021

Direct Torque Control For Silicon Carbide Motor Drives, Mohammad Hazzaz Mahmud

Graduate Theses and Dissertations

Direct torque control (DTC) is an extensively used control method for motor drives due to its unique advantages, e.g., the fast dynamic response and the robustness against motor parameters variations, uncertainties, and external disturbances. Using higher switching frequency is generally required by DTC to reduce the torque ripples and decrease stator current total harmonic distortion (THD), which however can lower the drive efficiency. Through the use of the emerging silicon carbide (SiC) devices, which have lower switching losses compared to their silicon counterparts, it is feasible to achieve high efficiency and low torque ripple simultaneously for DTC drives.

To overcome …


Analysis Of Three-Phase Rectifier Via Three Different Control Methods And Switch Power Loss Comparison, Yichao Wang Jan 2021

Analysis Of Three-Phase Rectifier Via Three Different Control Methods And Switch Power Loss Comparison, Yichao Wang

All Graduate Theses, Dissertations, and Other Capstone Projects

Traditional uncontrolled or phase-controlled rectifiers have the defects of lower power factor and nontrivial higher harmonics which causes the low efficiency of power, bad power quality, and so on. However, PWM rectifiers overcome the drawbacks mentioned above. They reduce the higher harmonics yielding better sinusoidal current on the grid side, achieve unity power factor and bidirectional power flow, and have better dynamic performance. So, it is favored more by academia and widely applied in high-performance power electronics devices. In this paper, the PWM rectifier is analyzed and a comparison of the switch loss on three-phase rectifier using three different control …


Lawn Buddy, Jayson Johnston, Andrew Brown, Jacob Maljian Jun 2020

Lawn Buddy, Jayson Johnston, Andrew Brown, Jacob Maljian

Electrical Engineering

Grass lawns are a common hallmark of the American home. In 2019, a survey from the National Association of Landscape Professionals found that 81% of all Americans owned a lawn [1]. Mowing is a time consuming and costly chore that is part of maintaining a grass lawn. The manual labor in mowing a lawn can exceed 40 hours per year [2]. People commonly incur weekly costs on mowing services to save time. Traditional gas powered mowers are physically demanding and use engines that need routine maintenance. They operate loudly enough that users should be wearing hearing protection and the noise …


Study Of A Symmetrical Llc Dual-Active Bridge Resonant Converter Topology For Battery Storage Systems, John K. George May 2020

Study Of A Symmetrical Llc Dual-Active Bridge Resonant Converter Topology For Battery Storage Systems, John K. George

Graduate Theses and Dissertations

A symmetrical LLC resonant converter topology with a fixed-frequency quasi-triple phase-shift modulation method is proposed for battery-powered electric traction systems with extensions to other battery storage systems. Operation of the converter with these methods yields two unique transfer characteristics and is dependent on the switching frequency. The converter exhibits several desirable features: 1) load-independent buck-boost voltage conversion when operated at the low-impedance resonant frequency, allowing for dc-link voltage regulation, zero-voltage switching across a wide load range, and intrinsic load transient resilience; 2) power flow control when operated outside the low-impedance resonance for integrated battery charging; 3) and simple operational mode …


H2 Control For Improved Stability Of Multi-Area Electric Power System With High Levels Of Inverter-Based Generation, Muthanna Abdulkareem Al-Sarray May 2019

H2 Control For Improved Stability Of Multi-Area Electric Power System With High Levels Of Inverter-Based Generation, Muthanna Abdulkareem Al-Sarray

Graduate Theses and Dissertations

Increased generation capacity from non-dispatchable energy resources such as wind and solar has created challenges to ensuring the reliable delivery of electric power. This research develops a systematic three-step method of assessing the reliability of electric power systems under a variety of different possible fault conditions to ensure that overall system stability is preserved in a manner the meets regulatory requirements. The first step is a risk-based reliability method (RBRM) that accounts for the probability of a line outage versus the severity of impact. This allows system planners to judiciously allocate expenses for reliability improvements based on the greatest economic …


Control Strategy For A Small-Scale Microgrid Based On Battery Energy Storage System-Virtual Synchronous Generator (Bess-Vsg), Wei Gao Jan 2019

Control Strategy For A Small-Scale Microgrid Based On Battery Energy Storage System-Virtual Synchronous Generator (Bess-Vsg), Wei Gao

Electronic Theses and Dissertations

As one of widely deployed renewable energy resources, PV power is playing a very important role in microgrids today. It has advantages such as making the best of natural solar energy and being friendly to our environment. In this thesis, solar PV based microgrid is studied using modeling and simulation. Microgrid can run in either grid-connected-mode or islanded-mode. However, there are also some disadvantages for solar power. For solar panel, its output is influenced by weather conditions such as illumination intensity and temperature. In addition, during the control process of grid-connected mode, it is hard to guarantee its output power …


Ball Oscillating Bouncer, Eric Blok, Daniel Altemese, Ryan Nowacki, Maram Qurban Jan 2018

Ball Oscillating Bouncer, Eric Blok, Daniel Altemese, Ryan Nowacki, Maram Qurban

Williams Honors College, Honors Research Projects

The purpose of this report is to document the need, objectives, marketing and engineering requirements, as well as validate the design of an autonomous control device capable of continuously bouncing a table tennis ball on a paddle. This includes the design of a self correcting system using lightweight materials, and as few sensors and components as possible to achieve a compact, portable design. To accomplish this, the system is designed to react to a ball falling from as short a distance as 10 centimeters above the paddle, meaning all sensor processing, control processing, and motor drives should be able to …


Hardware Based Testing Of Communication Based Control For Dc Microgrid, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed Nov 2017

Hardware Based Testing Of Communication Based Control For Dc Microgrid, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper further describes our work presented in Industry Application Society 2016 Conference, with more details related to the control and operation of the microgrid. The DC microgrid facility was custom designed and implemented at CCNY with minimal off-the-shelf components to enable flexibility and reconfiguration capability. The design steps, requirements, and experimental results of the developed testbed were discussed. As a case study, a central controller for energy management algorithm was developed and tested under several operational scenarios. The experimental results verify the applicability of the developed testbed for validating DC microgrid controllers.


Applications Of Krylov Subspace And Balanced Truncation Model Order Reduction In Power Systems, Sebastian Emanuel Garrido May 2017

Applications Of Krylov Subspace And Balanced Truncation Model Order Reduction In Power Systems, Sebastian Emanuel Garrido

Graduate Theses and Dissertations

Dynamic representations of power systems usually result in the order of hundreds or even thousands of buses. Therefore, reduction of these dynamic representations is convenient. Two applications of model order reduction in power systems are discussed in this thesis. First, Krylov subspace-based method is applied to the IEEE-123 Node Test Feeder in the context of distribution-level power systems simulation. Second, a Balanced Truncation-based model reduction is implemented in the 3-Machine 9-Bus system for designing a power system controller in the context of generation- and transmission-level power systems.

First, for the IEEE-123 Node Test Feeder, a two-sided Arnoldi algorithm is proposed …


A Hybrid State/Event Driven Communication-Based Control For Dc Microgrids, Yusef Esa Jan 2017

A Hybrid State/Event Driven Communication-Based Control For Dc Microgrids, Yusef Esa

Dissertations and Theses

The U.S. electric power industry is undergoing unprecedented changes triggered by the growing electricity demand, and the national efforts to reduce greenhouse gas emissions. Moreover, there is a call for increased power grid resiliency, survivability and self-healing capabilities. As a result of these challenges, the smart grid concept emerged. One of the main pillars of the smart grid is microgrids. In this thesis, the technical merits of clustering multiple microgrids during blackouts on the overall stability and supply availability have been investigated.

We propose to use the existing underground distribution grid infrastructure, if applicable, during blackouts to form microgrid clusters. …


Design, Control And Protection Of Modular Multilevel Converter (Mmc)-Based Multi-Terminal Hvdc System, Yalong Li Dec 2016

Design, Control And Protection Of Modular Multilevel Converter (Mmc)-Based Multi-Terminal Hvdc System, Yalong Li

Doctoral Dissertations

Even though today’s transmission grids are predominantly based on the high voltage alternating current (HVAC) scheme, interests on high voltage direct current (HVDC) are growing rapidly during the past decade, due to the increased penetration of remote renewable energy. Voltage source converter (VSC) type is preferred over the traditional line-commutated converter (LCC) for this application, due to the advantages like smaller station footprint and no need for strong interfacing ac grid. As the state-of-the-art VSC topology, modular multilevel converter (MMC) is mostly considered. Most renewable energy sources, such as wind and solar, is usually sparsely located. Multi-terminal HVDC (MTDC) provides …


Automatic Water Pump Controller, Alam D. Salguero, Kyle Russell Marquez Weeks Jun 2016

Automatic Water Pump Controller, Alam D. Salguero, Kyle Russell Marquez Weeks

Electrical Engineering

In countries including Indonesia, Mexico, Guatemala, and El Salvador, a city water authority supplies the clean water and pumps it into large ground-level storage tanks. A resident’s water pump then pumps the water to a water tank on top of his/her house. When the water level in the ground-level storage tank becomes too low, the pump siphons air and shuts down, requiring a resident to manually prime the water pump to get it running again. Residents struggle to monitor the water level of the tanks effectively and keep the pump running properly. To remedy the issue, the Automatic Water Pump …


Flatness-Based Control Methodologies To Improve Frequency Regulation In Power Systems With High Penetration Of Wind, Maryam Hassani Variani Dec 2014

Flatness-Based Control Methodologies To Improve Frequency Regulation In Power Systems With High Penetration Of Wind, Maryam Hassani Variani

Doctoral Dissertations

To allow for high penetration of distributed generation and alternative energy units, it is critical to minimize the complexity of generator controls and to minimize the need for close coordination across regions. We propose that existing controls be replaced by a two-tier structure of local control operating within a global context of situational awareness. Flatness as an extension of controllability for non-linear systems is a key to enabling planning and optimization at various levels of the grid in this structure. In this study, flatness-based control for: one, Automatic Generation Control (AGC) of a multi-machine system including conventional generators; and two, …


Grid-Scale Energy Storage: A Proposed Control Algorithm For Sodium Sulfur Batteries, Daniel Spaizman Jul 2014

Grid-Scale Energy Storage: A Proposed Control Algorithm For Sodium Sulfur Batteries, Daniel Spaizman

Master's Theses

With carbon dioxide levels in our atmosphere reaching record highs and 2020 quickly approaching, California is expected to pave the way for the United States in terms of replacing fossil fuel generation facilities with various renewable energy power plants. It is well documented that the inherent variability and limited duty cycle of renewables has hindered their growth. Energy storage technologies represent the bridge that can help us cross the divide from where we stand to where we must stand in the next 6 years. Utility companies value services such as peak shaving, voltage support, and frequency regulation, all of which …


Control Of Wind Energy Conversion Systems For Large-Scale Integration With The Power System, Omid Alizadeh Feb 2014

Control Of Wind Energy Conversion Systems For Large-Scale Integration With The Power System, Omid Alizadeh

Electronic Thesis and Dissertation Repository

This thesis is mainly focused on (i) mathematical modeling and real power control of a direct-drive wind energy conversion system (WECS) that employs a high-pole permanent-magnet synchronous generator (PMSG), and (ii) the contribution of the WECS to the frequency regulation process in a host power system. In the first part, a strategy is proposed for real power control of the WECS, which augments the maximum power-point tracking (MPPT) feature of modern WECSs. The proposed strategy is based on rapid torque control, rather than the (slow) pitch-angle control. Moreover, a supplementary damping scheme is presented and tuned for the proposed power …


Polar Field Oriented Control With 3rd Harmonic Injection, Martin Todd Hess Feb 2012

Polar Field Oriented Control With 3rd Harmonic Injection, Martin Todd Hess

Master's Theses

Abstract

POLAR FIELD-ORIENTED CONTROL

with

3RD HARMONIC INJECTION

Martin Todd Hess

Field Oriented Control (FOC), also known as vector control, is a widely used and well documented method for controlling Permanent-Magnet Synchronous Motors (PMSM) and induction motors. Almost invariably the orientation of the stator and rotor (field) fluxes are described in rectangular coordinates. In this thesis we explore the practicality of using polar coordinates.

Third harmonic injection is also a well-known technique that allows full utilization of the bus (DC-link), thus allowing the motor to run to full base speed without the use of field weakening. This technique potentially …


Design, Modeling And Control Strategy Of Pv/Fc Hybrid Power System, Dr. Adel A. Elbaset Jul 2011

Design, Modeling And Control Strategy Of Pv/Fc Hybrid Power System, Dr. Adel A. Elbaset

Dr. Adel A. Elbaset

This paper describes development of a general methodology of an autonomous PV/FC system composed of photovoltaic (PV), electrolyzer, hydrogen storage tank and fuel cell (FC). The aim of this paper is to determine optimum design, control strategy, economic and performance of a PV/FC hybrid power generation system without battery storage taking into account all losses in the system. The paper also presents a computer program based on Matlab software to determine optimum design, control strategy, economic and performance of an autonomous PV/FC hybrid power generation system. The computer program develops to size system components in order to match the load …


Coordinated Design Of Power System Stabilizers And Static Var Compensators In A Multimachine Power System Using Genetic Algorithms, Omar H. Abdalla, Wedad M. Refaey, Mohamed K. Saad, Gamal M. Sarhan Apr 2008

Coordinated Design Of Power System Stabilizers And Static Var Compensators In A Multimachine Power System Using Genetic Algorithms, Omar H. Abdalla, Wedad M. Refaey, Mohamed K. Saad, Gamal M. Sarhan

Omar H. Abdalla

This paper presents a procedure to coordinated design of PSSs and SVCs in a multimachine power system. The aims of the proposed method are to find the best location and the optimal parameters of these compensators in order to improve the steady state and transient performances and also to increase the system damping over a wide range of operating conditions. The objective function of the GA allows the selection of the PSSs and SVCs to shift critical closed loop eigenvalues to the left-hand side in the complex s-plane. The multimachine power system considered in this study consists of nine buses, …


Standardised Control Techniques For Induction Generators In Both Grid-Connected And Isolated Applications, John Brazil, Aidan O'Dwyer, M. Murphy Jan 1991

Standardised Control Techniques For Induction Generators In Both Grid-Connected And Isolated Applications, John Brazil, Aidan O'Dwyer, M. Murphy

Conference papers

Induction generators are particularly suitable for small hydro applications and are widely used at present. However, with conventional grid-connected techniques, it is not always possible to use them in regions with weak grids because of excessive connection transients. Consequently, their many advantages cannot be fully exploited in these regions. Standardised control systems have been developed by ECS for isolated applications of induction generators and these will now be further developed to permit reduced-transient grid connections.