Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Study Of Renewable Energy Penetration On A Benchmark Generation And Transmission System, Oluwaseun M. Akeyo, Aron Patrick, Dan M. Ionel Jan 2021

Study Of Renewable Energy Penetration On A Benchmark Generation And Transmission System, Oluwaseun M. Akeyo, Aron Patrick, Dan M. Ionel

Electrical and Computer Engineering Faculty Publications

Significant changes in conventional generator operation and transmission system planning will be required to accommodate increasing solar photovoltaic (PV) penetration. There is a limit to the maximum amount of solar that can be connected in a service area without the need for significant upgrades to the existing generation and transmission infrastructure. This study proposes a framework for analyzing the impact of increasing solar penetration on generation and transmission networks while considering the responses of conventional generators to changes in solar PV output power. Contrary to traditional approaches in which it is assumed that generation can always match demand, this framework …


Incorporating Battery Energy Storage Systems Into Multi-Mw Grid Connected Pv Systems, Vandana Rallabandi, Oluwaseun M. Akeyo, Nicholas Jewell, Dan M. Ionel Jan 2019

Incorporating Battery Energy Storage Systems Into Multi-Mw Grid Connected Pv Systems, Vandana Rallabandi, Oluwaseun M. Akeyo, Nicholas Jewell, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper analyzes the configuration, design, and operation of multi-MW grid connected solar photovoltaic (PV) systems with practical test cases provided by a 10-MW field development. In order to improve the capacity factor, the PV system operates at its maximum power point during periods of lower irradiance, and the power output is limited to a rated value at high irradiance. The proposed configuration also incorporates a utility scale battery energy storage system (BESS) connected to the grid through an independent inverter and benefits of the experience gained with a 1-MW 2-MWh BESS large demonstrator. The BESS power smoothing and frequency …


Developing A 1-Megawatt Photovoltaic Power Plant For Liberty University, Andrew Knudsen Apr 2018

Developing A 1-Megawatt Photovoltaic Power Plant For Liberty University, Andrew Knudsen

Senior Honors Theses

A photovoltaic power plant with a generation capacity of 1-megawatt is designed for Liberty University. Liberty University’s location and size are stated to provide context for the design. Design choices are presented, first with general information that is applicable to any photovoltaic plant design, then with significant factors that impact this design. Specific models of solar panels and inverters are selected after the necessary classifications are determined. The final design has 2,880 solar panels with a fixed angle 30⁰ above the horizon, has two central inverters, and takes up 2.57 acres. Future research is suggested for finances as well as …


Slides: Appropriate Sustainable Energy Technologies: A Light To The World, Lakshman D. Guruswamy, Jason B. Aamodt, Blake Feamster Sep 2012

Slides: Appropriate Sustainable Energy Technologies: A Light To The World, Lakshman D. Guruswamy, Jason B. Aamodt, Blake Feamster

2012 Energy Justice Conference and Technology Exposition (September 17-18)

Presenter: Jason Aamodt, Attorney; Adjunct Professor, University of Tulsa

15 slides


Agenda: A Low-Carbon Energy Blueprint For The American West, University Of Colorado Boulder. Natural Resources Law Center, University Of Colorado Boulder. Renewable And Sustainable Energy Institute, Western Resource Advocates, Rocky Mountain Research Station (Fort Collins, Colo.) Jun 2012

Agenda: A Low-Carbon Energy Blueprint For The American West, University Of Colorado Boulder. Natural Resources Law Center, University Of Colorado Boulder. Renewable And Sustainable Energy Institute, Western Resource Advocates, Rocky Mountain Research Station (Fort Collins, Colo.)

A Low-Carbon Energy Blueprint for the American West (Martz Summer Conference, June 6-8)

The future of the planet may depend upon our ability to increase energy supplies even as we reduce carbon emissions. This conference will address how a low-carbon energy program might evolve with a particular focus on the American West. It will focus on the future of energy in the West--on a “managed transition” to a different energy mix, on the need to nest this effort in a framework that acknowledges interconnections, and on identifying the most salient opportunities to consider the legal, political, financial, and technical challenges.


Technical Feasibility Of Storage On Large Dish Stirling Systems, Charles E. Andraka, K Scott Rawlinson, Nathan P. Siegel Jan 2012

Technical Feasibility Of Storage On Large Dish Stirling Systems, Charles E. Andraka, K Scott Rawlinson, Nathan P. Siegel

Faculty Journal Articles

Dish-Stirling systems have been demonstrated to provide high-efficiency solar-only electrical generation, holding the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. Current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This report takes an initial look at …


Highly Efficient Maximum Power Point Tracking Using A Quasi-Double-Boost Dc/Dc Converter For Photovoltaic Systems, Christopher J. Lohmeier Dec 2011

Highly Efficient Maximum Power Point Tracking Using A Quasi-Double-Boost Dc/Dc Converter For Photovoltaic Systems, Christopher J. Lohmeier

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Solar photovoltaic (PV) panels are a great source of renewable energy generation. The biggest problem with solar systems is relatively low efficiency and high cost. This work hopes to alleviate this problem by using novel power electronic converter and control designs. An electronic DC/DC converter, called “Quasi-Double-Boost DC/DC Converter,” is designed for a Solar PV system. A Maximum Power Point Tracking (MTTP) algorithm is implemented through this converter. This algorithm allows the PV system to work at its highest efficiency. Different current sensing and sensorless technologies used with the converter for the MPPT algorithm are offered and tested. Design aspects …