Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials

Theses/Dissertations

2023

Institution
Keyword
Publication

Articles 1 - 30 of 51

Full-Text Articles in Engineering

Modeling Of Asphalt Concrete For Cross-Anisotropic Visco-Elasticity And Heterogeneity, Zafrul Hakim Khan Dec 2023

Modeling Of Asphalt Concrete For Cross-Anisotropic Visco-Elasticity And Heterogeneity, Zafrul Hakim Khan

Civil Engineering ETDs

Asphalt Concrete (AC) is a cross-anisotropic viscoelastic material. This study has developed a methodology to backcalculate the cross-anisotropic properties of the AC layer from the Falling Weight Deflectometer (FWD) sensor and pavement response data from embedded sensors inside a pavement section. This study has also developed a two-way coupled Multiscale Finite Element Model (MsFEM) with Phase Field Fracture (PFF) to study the microstructural heterogeneity and damage of the AC layer based on the actual field loadings. A Finite Difference Time Domain (FDTD) and Machine learning-based backcalculation algorithm were developed to determine the layer thickness and dielectric constant from air-coupled Ground …


Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler Dec 2023

Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler

Mechanical Engineering ETDs

This study presents a flexible sensor/harvester device to be used in both electromagnetic sensing and energy harvesting applications for smart grids. When a current passes through a wire, the sensor detects the magnetic field created by that current. The sensor magnet interacts with the wire magnetic field resulting in a transfer of energy through the piezoelectric cantilever. Piezoelectric, conductive, magnetic, and magnetostrictive composite thin films were prepared to fabricate this device.

Initially, the magnet of the cantilever was optimized considering its shape, thickness, length, taper angle etc. via both simulations and experiments. Peak to peak voltage versus cantilever position graph …


Thermally Rearranging Polyimide Networks For High-Temperature Applications, William Guzman Dec 2023

Thermally Rearranging Polyimide Networks For High-Temperature Applications, William Guzman

Dissertations

High-performance polymers can retain functional properties when exposed to long-term or short-term durations of harsh conditions, such as mechanical action, at elevated temperatures (>177 °C). A mixture of intramolecular and intermolecular forces of and between polymer chains provide excellent property retention at elevated temperatures. Specifically, the highly aromatic nature of high-performance polymer backbones provides outstanding thermal stability, which is typically attributed to π-π stacking. However, the interrelationship between thermal stability and high aromaticity creates a challenging structure-processing relationship paradigm, which causes poor polymer processability in most high-performance polymers. Herein, it was demonstrated that rationally designing a crosslinking phenylethynyl imide …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams Dec 2023

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Fabrication Of Alumina Membranes From Uv Resin– Alumina Particle Slurries, Dominique Henry Porcincula Dec 2023

Fabrication Of Alumina Membranes From Uv Resin– Alumina Particle Slurries, Dominique Henry Porcincula

Master's Theses

Ceramics membranes are made in a wide variety of different techniques using a wide variety of different materials. However, many of the common techniques utilize a slurry of ceramic particles, additives, and either organic solvent or water that is shaped into a membrane, left to dry, and then sintered together. Drying is a time consuming process, often requiring several hours for the liquid medium to evaporate. Defect formation caused by development of partial pressures across the drying membrane, including cracks and warpage, also typically occurs during the drying process. To address this, slurries of ceramic particles made with a low …


Modular Composite Sandwich Structures For Thermal And Structural Retrofitting Of Existing Buildings, Marc Al Ghazal Dec 2023

Modular Composite Sandwich Structures For Thermal And Structural Retrofitting Of Existing Buildings, Marc Al Ghazal

Masters Theses

Around 40% of global energy consumption and 30% of worldwide carbon dioxide (CO2) emissions are attributed to buildings. Most of this consumption is dedicated to ensuring thermal comfort. The goal of this research was to develop and field validate retrofit solutions to improve the energy efficiency of buildings. Exterior cladding panels were designed and tested to ensure adequate thermal and structural performance. Sandwich panels (glass fibers reinforced polymer (GFRP) skins and polymeric foam cores) were fabricated using the vacuum assisted resin transfer molding (VARTM) process. Extruded polystyrene (XPS) and polyurethane (PU) foams were compared as core materials through a series …


Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari Oct 2023

Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari

Doctoral Dissertations and Master's Theses

The carbon fiber/epoxy interface is of great importance in composite design due to its load transfer mechanisms from the weak epoxy to the stronger fiber. Improving the strength of the interface reduces the risk of failure at the interface and improves the load transfer to the fiber. In this study, two types of nano-species ZnO nanowires and nickel-based metal organic frameworks were grown on carbon fibers to improve the interfaces. The interfacial mechanics of the enhanced fibers are evaluated using nanoindentation studies. Composite samples with Aeropoxy matrix and vertically aligned fibers are fabricated for this purpose. A Bruker TI-980 TriboIndenter …


Investigating The Rheological Behavior Of A Simple Yield Stress Fluid Under Shear Flows, Francesco Accetta Aug 2023

Investigating The Rheological Behavior Of A Simple Yield Stress Fluid Under Shear Flows, Francesco Accetta

Theses

Many soft materials display unique and complex rheological behavior characterized by a transition from a solid-like to a fluid-like state upon the application of a force that exceeds the threshold to flow, known as the yield stress. Yield stress fluids are found in a wide range of commonly encountered materials including microgels, emulsions, and foams, and have been widely studied by rheologists over the last several decades. Carbopol is a popular polymeric microgel system as it displays simple, non-thixotropic rheological behavior and is typically seen as an ideal yield stress fluid. Previous research has demonstrated the reproducible behavior of shear …


Investigating The Effect Of Bead Geometry On Fiber Orientation And Thermomechanical Properties For Large-Format Extrusion-Based Additive Manufacturing, Joanna F. Keaton Aug 2023

Investigating The Effect Of Bead Geometry On Fiber Orientation And Thermomechanical Properties For Large-Format Extrusion-Based Additive Manufacturing, Joanna F. Keaton

Electronic Theses and Dissertations

In large-format extrusion-based additive manufacturing of polymer composites, the relationship between material properties and processing parameters requires further investigation. This thesis focuses on the relationship between fiber orientation and thermomechanical properties for short fiber-filled thermoplastic polymer systems manufactured by extrusion-based additive manufacturing. Fiber orientation is particularly important in determining the thermomechanical properties of the composite material as properties in the direction of deposition are expected to be higher for highly aligned fibers than randomly aligned fibers. Fiber orientation distribution, which is related to processing parameters and deposition conditions, can be efficiently represented by the orientation tensor. The orientation tensor can …


Mechanical Characterization Of Automated Fiber Placement And Additive Manufacturing Hybrid Composites, Lucan Haviland Aug 2023

Mechanical Characterization Of Automated Fiber Placement And Additive Manufacturing Hybrid Composites, Lucan Haviland

Electronic Theses and Dissertations

This thesis presents the optimization of processing parameters based on the mechanical properties of Continuous Fiber-Reinforced Thermoplastic (CFRTP) Unidirectional (UD) consolidated tapes. The UD tapes were consolidated using an AFP head and a thermoforming press for comparison. The adhesive strength of hybrid parts consisting of CFRTP UD tape bonded to a 3D-printed substrate with the same matrix system were investigated. Large Area Additive Manufacturing (LAAM) was utilized for the 3D-printed parts. Different types of thermoplastic composite materials were explored, including Glass Fiber reinforced Polyethylene Terephthalate Glycol (GF/PETG), Carbon Fiber reinforced Polyethylene Terephthalate Glycol (CF/PETG), Carbon Fiber reinforced Polycarbonate (CF/PC), and …


Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng Aug 2023

Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng

Electronic Thesis and Dissertation Repository

Featured by biocompatibility, high compliance and capacity in sustaining large deformation, dielectric elastomers (DEs) and hydrogels have gained extensive research popularity for their potential applications in the fields of soft robots, biomimetics, tissue engineering, drug delivery, and energy harvesting. The design of such soft and smart material-based devices and structures requires deep understanding and accurate simulation of their constitutive behaviors, which is challenged by their nonlinear material properties due to unique microstructures and multi-physics coupling. Meanwhile, in different application contexts, those structures are also susceptible to different failure modes, imposing further challenges in simulating and predicting their performance. To fulfill …


Evaluation Of Biomass As Bio-Additive In 3d Printing, Shuyang Zhang Aug 2023

Evaluation Of Biomass As Bio-Additive In 3d Printing, Shuyang Zhang

Doctoral Dissertations

The petrol-based polymer has been widely applied in current daily life. The end-of-life of polymeric products has drawn environmental concerns. One of the solutions to such issues is to use bio-renewable materials to replace or reduce the use of petrol-based materials. Lignocellulosic materials are one of the potential candidates. Along with the features of 3D printing and the unique properties of biomass, 3D-printed biomass-based materials could be promising in preparing sustainable alternatives.

In this dissertation, lignin and other biomass were applied to various 3D printing techniques for sustainable composites. Stereolithography (SLA) was first used, and the kraft softwood lignin was …


Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho Aug 2023

Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho

Open Access Theses & Dissertations

Testing for mechanical properties for additive manufacturing has been based on already existing standards for traditional manufacturing methods. For composites in large scale additive manufacturing there is a research gap in bond strength and fracture toughness for a single layer interface. By using Double cantilever beam Mode I, this thesis manuscript validates testing parameters and protocols to describe the intricacies of ABS matrix 20 wt.% carbon filled composite, specifically on the layer-to-layer interface. Studies suggest that fracture toughness is sensitive to process parameters, like deflection speed and sharpened crack tip at the layer interface of BAAM 3D printed part and …


Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady Aug 2023

Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady

All Theses

Polylactic acid (PLA) is a biopolymer made from renewable resources such as sugar and corn. PLA filament is a popular material used in Fused Deposition Modeling (FDM) 3D-printing. While this material has many advantages, all the failed parts, support structures, rafts, nozzle tests, and the many prototype iterations during the 3D-printing process contribute to the plastic pollution and release of greenhouse gases. Although PLA is biodegradable, it can take years to degrade in landfills. Instead of throwing away PLA waste and buying new filaments, PLA can be recycled. Amongst the different recycling technologies, mechanical recycling is the most environmentally friendly. …


Glass Bubbles Grafted With Polymer Brushes For Liquid Hydrocarbon Fire Extinguishment, Randall Snipes Aug 2023

Glass Bubbles Grafted With Polymer Brushes For Liquid Hydrocarbon Fire Extinguishment, Randall Snipes

All Dissertations

The current most efficient solution to fighting liquid pool fires involves the use of firefighting foams containing fluorinated surfactants. The physiochemical properties of these foams are considerably different to all other currently available firefighting foams. Fluorinated surfactants lower the surface tension to a point where the foam solution draining from the foam structure forms a continuous aqueous film on the surface of a volatile hydrocarbon fuel, adding an additional barrier to fuel vapor diffusion to the burning fire. For this reason, these foams qualify as aqueous film forming foams (AFFFs). However, fluorinated compounds are extremely harmful for the environment due …


Life Cycle Energy Assesment Of Advanced Fiber Reinforced Composite Design And Manufacturing Methodologies, Urjit Lad Aug 2023

Life Cycle Energy Assesment Of Advanced Fiber Reinforced Composite Design And Manufacturing Methodologies, Urjit Lad

All Theses

Automotive industry at large is focused on vehicle light-weighting since a 6%-8% increase in fuel efficiency can be achieved with a 10% reduction in vehicle weight [1]. With the growing demand for cost-effective and sustainable light weighting of automobile structures, interest has increased in the application of fiber reinforced plastic (FRP) composites for use in the Body-in-White (BiW), which can account for up to 40% of the total vehicle weight. Traditional FRP composite manufacturing processes like vacuum assisted resin transfer molding, autoclave consolidation or use of automated fiber placement have been successfully used for marine and aerospace applications. However, these …


Effect Of Environmental And Ultraviolet Degradation On The Albedo Of Polyethylene Sheet Materials For Improved Energy Harvesting By Bifacial Photovoltaic Power Plants, William A. Jang, Roxy H. Jackson-Gain Jun 2023

Effect Of Environmental And Ultraviolet Degradation On The Albedo Of Polyethylene Sheet Materials For Improved Energy Harvesting By Bifacial Photovoltaic Power Plants, William A. Jang, Roxy H. Jackson-Gain

Materials Engineering

Solar energy farms typically utilize monofacial photovoltaic (mPV) cells in their arrays to capture direct sunlight to produce renewable energy. However, the efficiency of these farms can be increased by 2 – 6% through the implementation of bifacial photovoltaic cells (bPV). These bPV cells function by capturing incident ultraviolet (UV) light energy that is reflected off the surface to increase its overall energy production. The amount of UV energy that is reflected is dependent on the albedo value of surface, which is a measure of energy reflectance. In this study, samples of unreinforced polyethylene (PE), scrim-reinforced polyethylene (SR-PE), and woven …


Covalent Adaptable Networks For Wood Coatings, Jachin Boaz Clarke Jun 2023

Covalent Adaptable Networks For Wood Coatings, Jachin Boaz Clarke

Materials Engineering

Wood swells and shrinks causing problems with seasonal humidity. Applying thick coatings of reactive finishes based on cross-linked polyurethane, epoxy, or polyesters can slow moisture-vapor exchange. However, the use of thick coatings leads to cracking and crazing sooner than thin finishes. This research proposes the addition of 3.3 mol % triazabicyclodecene, a conventionally used covalent adaptable network catalyst, in a commercially available polyester-based wood coating. The self-healing of the wood coating is tested using DMA stress relaxation and compression molding. The result from DMA renders inconclusive and compression molding indicates the novel wood coating oxidizes at elevated temperatures. The wood …


Surface Characterization Of Low-Density Polyethylene Mulch, Risha Shah Jun 2023

Surface Characterization Of Low-Density Polyethylene Mulch, Risha Shah

Materials Engineering

Plastic pollution in aquatic systems has traditionally been highlighted in past and current research due to the increase in plastic production every year. Unfortunately, quantitative and qualitative data regarding plastic pollution on land systems such as agricultural mulch is limited. Agricultural mulch breaks down into macroplastics and then degrades into microplastics. The microplastics investigated in this study are all secondary microplastics: microplastics that form due to weathering of larger fragments of plastic. Weathering can occur due to a variety of factors; however, UV radiation and mechanical weathering have been the factors of focus on most current research in microplastic formulation. …


Interlaminar Tensile Properties Of Unidirectional And Woven Carbon Fiber Reinforced Toughened Epoxy Laminates, Eric Timothy Casey, Sean Mckalip Thompson Jun 2023

Interlaminar Tensile Properties Of Unidirectional And Woven Carbon Fiber Reinforced Toughened Epoxy Laminates, Eric Timothy Casey, Sean Mckalip Thompson

Materials Engineering

This project aims to develop a dataset on interlaminar tensile strength comparing unidirectional and woven thermoset matrix carbon fiber composites keeping ply count, matrix material, and fiber diameter constant. The interlaminar tensile strength is an important property relating to the delamination failure mode. Interlaminar tensile strength is determined using the ASTM D6415 testing standard. This test is a modified four-point bend test using a 90° curved beam test specimen. Laminates were produced by laying up pre-impregnated carbon fiber sheets onto a curved beam tooling. The unidirectional laminate was produced with 20 plies in a [0,0,90,0,0]4 layup pattern. The woven …


Piezoelectric And Conductive Polymer Based Flexible Devices Enabling Cardiovascular Health Sensing And Energy Harvesting, Andrew Closson May 2023

Piezoelectric And Conductive Polymer Based Flexible Devices Enabling Cardiovascular Health Sensing And Energy Harvesting, Andrew Closson

Dartmouth College Ph.D Dissertations

Piezoelectric materials show great promise for low-power wearable and implantable sensing, but their rigidity makes it challenging to integrate them with biological tissue. To address this, researchers have started exploring polymer-based functional materials that offer flexibility and are suitable for interfacing with the human body. However, these materials are still in their early stages, and a framework is necessary to illustrate how these materials, in conjunction with novel fabrication techniques and device designs, can enable the development of multi-functional sensing and energy harvesting devices.

This thesis utilizes highly scalable fabrication methods for functional polymers to build and test a flexible …


Development Of Novel Sensor Coating Methodology To Enable Understanding Of Fouling Mechanisms On Ion Exchange Membranes, Andrew Ulmer May 2023

Development Of Novel Sensor Coating Methodology To Enable Understanding Of Fouling Mechanisms On Ion Exchange Membranes, Andrew Ulmer

Honors Theses

As populations expand and natural water resources are depleted, severe droughts and limited access to clean water have become an increased threat to areas across the world. Effective and economic water treatment methods such as electrodialysis (ED) are vital for combating these threats, especially in developing nations and secluded locations. Organic foulant adsorption on the surface of ion exchange membranes severely limits the capabilities of water desalination systems such as ED along with significantly increasing maintenance costs. Understanding characteristics such as the total amount and rate at which these foulants at specific concentrations adsorb and desorb to the membranes is …


Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson May 2023

Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson

Chemical Engineering Undergraduate Honors Theses

Society relies on plastic products, whether they are single use or durable. A downside of plastic is that the most common type is a product of oil and oil is not only a limited resource but also a climate-damaging resource. Polylactic acid (PLA) is a bio-based, biodegradable plastic. However, the process of converting biomass to polylactic acid polymer has the largest environmental impact of the PLA production process, so alternative methods of conversion are needed (Moretti et al., 2021). The polylactic acid polymer can be made with lactic acid, which can be converted from glucose.


Mesoscale Modeling Of Controlled Degradation In Polymer Networks And Melts, Vaibhav Palkar May 2023

Mesoscale Modeling Of Controlled Degradation In Polymer Networks And Melts, Vaibhav Palkar

All Dissertations

Controlled degradation of polymers finds various applications in fields ranging from the design of functional soft materials to recycling of polymers. In several of these applications, the characteristic length scale at which relevant processes occur ranges from nanometers to microns, typically referred to as the mesoscale. Although analytical models and continuum approaches inform our current understanding, analysis of degradation at the mesoscale is exceptionally limited. For modeling degradation at the mesoscale, we use the Dissipative Particle Dynamics (DPD) technique and the LAMMPS simulation software. Within the DPD framework, we model controlled degradation or the breaking of covalent bonds within a …


Analytical And Experimental Investigation Of Interphase And Dispersion Effects On The Mechanical Stiffness Of Cellulose Nanocomposites, Will Goldberg May 2023

Analytical And Experimental Investigation Of Interphase And Dispersion Effects On The Mechanical Stiffness Of Cellulose Nanocomposites, Will Goldberg

McKelvey School of Engineering Theses & Dissertations

The effect of dispersion and interphase properties on the elastic behavior of cellulose nanocomposites was investigated using a number of composite models, experimental data and a thorough literature review. Cellulose nanocomposites consisting of soy protein isolate (SPI) and cellulose nanocrystals (CNC) or polydopamine coated cellulose nanocrystals (PD-CNC) were prepared via solution casting method and tested for mechanical stiffness. These outcomes were compared to standard composite models as well as novel methods adapted from the literature that incorporate data regarding dispersion quality and interphase properties. The literature review verified that both dispersion and interphase properties are highly dependent on interfacial chemistry …


Lignin Copolymer Property Prediction Using Machine Learning, Collin Larsen May 2023

Lignin Copolymer Property Prediction Using Machine Learning, Collin Larsen

Chemical Engineering Undergraduate Honors Theses

Lignin, an abundant biopolymer, is a waste byproduct of the paper and pulp industry. Despite its renewable nature and potential applicability in various products, such as plastics and composites, the development of lignin-based materials has been impeded by the cumbersome, Edisonian process of trial and error. This research proposes a novel approach to forecasting the properties of lignin-based copolymers by utilizing a recurrent neural network (RNN) based on the Keras models previously created by Tao et al. Example units of modified lignin were synthesized via esterification and amination functional group modifications. To increase the efficiency and accuracy of the prediction …


Formulation And Optimization Of Algae-Filled Polylactic Acid Thermoplastic Compounds For Improved Biodegradation, Sydney A. Cole May 2023

Formulation And Optimization Of Algae-Filled Polylactic Acid Thermoplastic Compounds For Improved Biodegradation, Sydney A. Cole

Honors Theses

Conventional plastics derived from non-renewable petrochemicals – especially from fossil reserves – have become an integral part of human life because their structure can be chemically manipulated to obtain a wide range of properties and geometries necessary in nearly all industries. The volume and rate at which petroleum plastics are produced, used, and discarded has incited several significant issues related to human health, environmental conservation, and ecological biodiversity. To address these issues, many institutions have begun investigating solutions in both the development and end-oflife phases of plastic production and waste. In this thesis, a Chlorella-dominated algae mixture is dried and …


Elucidating The Mechanical And Transport Properties Of Lignin-Based Hydrogel Composites, Nicholas Gregorich May 2023

Elucidating The Mechanical And Transport Properties Of Lignin-Based Hydrogel Composites, Nicholas Gregorich

All Dissertations

The use of lignin in the fabrication of soft composites has become an emerging area of research in polymer science and polymer chemistry. These lignin-based materials present numerous benefits, notably, a reduction in the use of petroleum-based precursor, improved structural benefits to otherwise soft host polymers, as well as the inherent antimicrobial and antioxidant properties of lignin, making it suitable for biomaterials. Herein, we present two chemical reaction pathways of incorporating lignin that was fractionated and cleaned using the Aqueous Lignin Purification with Hot Agents (ALPHA) process into poly(vinyl alcohol) (PVA) hydrogel composites for aqueous-based separations. By leveraging the ALPHA …


Comparative Analysis On Low Cost Continuous Carbon Fiber Polypropylene Composite Using Compression Molding And Automated Tape Placement, Benjamin U. Schwartz May 2023

Comparative Analysis On Low Cost Continuous Carbon Fiber Polypropylene Composite Using Compression Molding And Automated Tape Placement, Benjamin U. Schwartz

Masters Theses

Carbon fiber reinforced plastics (CFRP) are widely used throughout the aerospace industry where a weight reduction remains the highest priority with less emphasis on cost. Textile grade carbon fiber (TCF) and other low cost carbon fiber (LCCF) alternatives have recently emerged for use in the automotive market where emissions regulations have pushed automotive manufacturers and research institutions to look for cost effective light weight materials. Fiber reinforced thermoplastics provide an effective solution that align with automotive design including low cost, high processing rates, high impact toughness, unlimited shelf life, and recyclability.

TCF and Zoltek_PX35 fibers are two LCCF aimed at …